Physics-Informed Neural Networks for Heat Transfer Problems

传热 离散化 人工神经网络 计算机科学 学习迁移 领域(数学分析) 领域(数学) 人工智能 物理 机械 数学 数学分析 纯数学
作者
Shengze Cai,Zhicheng Wang,Sifan Wang,Paris Perdikaris,George Em Karniadakis
出处
期刊:Journal of heat transfer [ASME International]
卷期号:143 (6) 被引量:529
标识
DOI:10.1115/1.4050542
摘要

Abstract Physics-informed neural networks (PINNs) have gained popularity across different engineering fields due to their effectiveness in solving realistic problems with noisy data and often partially missing physics. In PINNs, automatic differentiation is leveraged to evaluate differential operators without discretization errors, and a multitask learning problem is defined in order to simultaneously fit observed data while respecting the underlying governing laws of physics. Here, we present applications of PINNs to various prototype heat transfer problems, targeting in particular realistic conditions not readily tackled with traditional computational methods. To this end, we first consider forced and mixed convection with unknown thermal boundary conditions on the heated surfaces and aim to obtain the temperature and velocity fields everywhere in the domain, including the boundaries, given some sparse temperature measurements. We also consider the prototype Stefan problem for two-phase flow, aiming to infer the moving interface, the velocity and temperature fields everywhere as well as the different conductivities of a solid and a liquid phase, given a few temperature measurements inside the domain. Finally, we present some realistic industrial applications related to power electronics to highlight the practicality of PINNs as well as the effective use of neural networks in solving general heat transfer problems of industrial complexity. Taken together, the results presented herein demonstrate that PINNs not only can solve ill-posed problems, which are beyond the reach of traditional computational methods, but they can also bridge the gap between computational and experimental heat transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马要努力完成签到,获得积分10
1秒前
1秒前
今后应助鲤鱼凝云采纳,获得10
1秒前
jcshen完成签到 ,获得积分10
2秒前
yll完成签到,获得积分10
2秒前
laopei2001发布了新的文献求助10
3秒前
苗松发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
崔斯坦完成签到,获得积分10
6秒前
6秒前
烟花应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得30
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
QQWQEQRQ发布了新的文献求助20
8秒前
Singularity应助laopei2001采纳,获得10
9秒前
石头发布了新的文献求助10
9秒前
叶问儿完成签到,获得积分10
10秒前
ddfighting完成签到,获得积分10
11秒前
llsdlwy完成签到,获得积分10
11秒前
Luny发布了新的文献求助30
12秒前
xm发布了新的文献求助10
12秒前
Tonnyjing应助垃圾采纳,获得10
12秒前
曾经的依风完成签到,获得积分10
13秒前
辻辰发布了新的文献求助10
14秒前
bkagyin应助xiaoxiao采纳,获得10
14秒前
共享精神应助石头采纳,获得10
15秒前
16秒前
大个应助Ray采纳,获得10
16秒前
端庄大白完成签到 ,获得积分10
17秒前
orixero应助快乐的心情采纳,获得10
18秒前
Z+V发布了新的文献求助10
19秒前
20秒前
文人青发布了新的文献求助10
20秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
Evolution 5000
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
La Chine révolutionnaire d'aujourd'hui / Van Min, Kang Hsin 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3044554
求助须知:如何正确求助?哪些是违规求助? 2701739
关于积分的说明 7384800
捐赠科研通 2345718
什么是DOI,文献DOI怎么找? 1241583
科研通“疑难数据库(出版商)”最低求助积分说明 603979
版权声明 595503