亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-Informed Neural Networks for Heat Transfer Problems

传热 离散化 人工神经网络 计算机科学 学习迁移 领域(数学分析) 领域(数学) 人工智能 物理 机械 数学 数学分析 纯数学
作者
Shengze Cai,Zhicheng Wang,Sifan Wang,Paris Perdikaris,George Em Karniadakis
出处
期刊:Journal of heat transfer [ASME International]
卷期号:143 (6) 被引量:791
标识
DOI:10.1115/1.4050542
摘要

Abstract Physics-informed neural networks (PINNs) have gained popularity across different engineering fields due to their effectiveness in solving realistic problems with noisy data and often partially missing physics. In PINNs, automatic differentiation is leveraged to evaluate differential operators without discretization errors, and a multitask learning problem is defined in order to simultaneously fit observed data while respecting the underlying governing laws of physics. Here, we present applications of PINNs to various prototype heat transfer problems, targeting in particular realistic conditions not readily tackled with traditional computational methods. To this end, we first consider forced and mixed convection with unknown thermal boundary conditions on the heated surfaces and aim to obtain the temperature and velocity fields everywhere in the domain, including the boundaries, given some sparse temperature measurements. We also consider the prototype Stefan problem for two-phase flow, aiming to infer the moving interface, the velocity and temperature fields everywhere as well as the different conductivities of a solid and a liquid phase, given a few temperature measurements inside the domain. Finally, we present some realistic industrial applications related to power electronics to highlight the practicality of PINNs as well as the effective use of neural networks in solving general heat transfer problems of industrial complexity. Taken together, the results presented herein demonstrate that PINNs not only can solve ill-posed problems, which are beyond the reach of traditional computational methods, but they can also bridge the gap between computational and experimental heat transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一期一会完成签到,获得积分10
1秒前
3秒前
852应助热情新蕾采纳,获得10
9秒前
rrjl完成签到,获得积分10
14秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
tkx是流氓兔完成签到,获得积分10
22秒前
默mo完成签到 ,获得积分10
26秒前
27秒前
婷123发布了新的文献求助10
28秒前
YYY完成签到 ,获得积分10
29秒前
30秒前
生动的煎蛋完成签到 ,获得积分10
35秒前
35秒前
酷波er应助chenchen97422采纳,获得10
36秒前
xx发布了新的文献求助10
38秒前
kbcbwb2002完成签到,获得积分0
39秒前
PDE完成签到,获得积分10
41秒前
44秒前
满意的妙海完成签到 ,获得积分10
45秒前
开心忆彤发布了新的文献求助10
48秒前
西红柿与外太空完成签到,获得积分10
49秒前
狗十七完成签到 ,获得积分10
54秒前
王者归来之齐天大圣完成签到,获得积分10
56秒前
1分钟前
Adc应助贺可乐采纳,获得10
1分钟前
西西歪完成签到 ,获得积分20
1分钟前
悠哉发布了新的文献求助10
1分钟前
1分钟前
热情新蕾发布了新的文献求助10
1分钟前
1分钟前
Yina完成签到 ,获得积分10
1分钟前
西西歪发布了新的文献求助10
1分钟前
1分钟前
谢飞完成签到,获得积分10
1分钟前
chenchen97422发布了新的文献求助10
1分钟前
cappuccino完成签到 ,获得积分10
1分钟前
wanghuiyanyx发布了新的文献求助10
1分钟前
Nene完成签到 ,获得积分10
1分钟前
1分钟前
fu完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870591
求助须知:如何正确求助?哪些是违规求助? 6463951
关于积分的说明 15664463
捐赠科研通 4986675
什么是DOI,文献DOI怎么找? 2688931
邀请新用户注册赠送积分活动 1631313
关于科研通互助平台的介绍 1589367