Physics-Informed Neural Networks for Heat Transfer Problems

传热 离散化 人工神经网络 计算机科学 学习迁移 领域(数学分析) 领域(数学) 人工智能 物理 机械 数学 数学分析 纯数学
作者
Shengze Cai,Zhicheng Wang,Sifan Wang,Paris Perdikaris,George Em Karniadakis
出处
期刊:Journal of heat transfer [ASME International]
卷期号:143 (6) 被引量:529
标识
DOI:10.1115/1.4050542
摘要

Abstract Physics-informed neural networks (PINNs) have gained popularity across different engineering fields due to their effectiveness in solving realistic problems with noisy data and often partially missing physics. In PINNs, automatic differentiation is leveraged to evaluate differential operators without discretization errors, and a multitask learning problem is defined in order to simultaneously fit observed data while respecting the underlying governing laws of physics. Here, we present applications of PINNs to various prototype heat transfer problems, targeting in particular realistic conditions not readily tackled with traditional computational methods. To this end, we first consider forced and mixed convection with unknown thermal boundary conditions on the heated surfaces and aim to obtain the temperature and velocity fields everywhere in the domain, including the boundaries, given some sparse temperature measurements. We also consider the prototype Stefan problem for two-phase flow, aiming to infer the moving interface, the velocity and temperature fields everywhere as well as the different conductivities of a solid and a liquid phase, given a few temperature measurements inside the domain. Finally, we present some realistic industrial applications related to power electronics to highlight the practicality of PINNs as well as the effective use of neural networks in solving general heat transfer problems of industrial complexity. Taken together, the results presented herein demonstrate that PINNs not only can solve ill-posed problems, which are beyond the reach of traditional computational methods, but they can also bridge the gap between computational and experimental heat transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whatever举报求助违规成功
刚刚
嗯哼举报求助违规成功
刚刚
刚刚
Koi完成签到 ,获得积分10
1秒前
3秒前
3秒前
3秒前
3秒前
Melody完成签到,获得积分10
4秒前
phw2333完成签到,获得积分10
4秒前
sanmu发布了新的文献求助30
4秒前
4秒前
美好斓发布了新的文献求助10
4秒前
CrazySiO2完成签到,获得积分10
4秒前
5秒前
7秒前
不安青牛应助findmoon采纳,获得20
7秒前
All发布了新的文献求助10
8秒前
123发布了新的文献求助10
9秒前
tttccc发布了新的文献求助10
9秒前
9秒前
10秒前
科研文献搬运工举报求助违规成功
10秒前
whatever举报求助违规成功
10秒前
粗犷的沛容举报求助违规成功
10秒前
10秒前
Ava应助zppppp采纳,获得10
11秒前
lilala发布了新的文献求助10
13秒前
13秒前
善良的火完成签到 ,获得积分10
13秒前
香妃完成签到,获得积分10
13秒前
Joseph_sss发布了新的文献求助10
13秒前
14秒前
情怀应助xecbouwbcou采纳,获得10
14秒前
lgf完成签到,获得积分10
15秒前
15秒前
星辰大海应助JY采纳,获得10
16秒前
唐涤烦子完成签到,获得积分20
16秒前
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159701
求助须知:如何正确求助?哪些是违规求助? 2810654
关于积分的说明 7888962
捐赠科研通 2469692
什么是DOI,文献DOI怎么找? 1314994
科研通“疑难数据库(出版商)”最低求助积分说明 630738
版权声明 602012