E 3 MoP: Efficient Motion Planning Based on Heuristic-Guided Motion Primitives Pruning and Path Optimization With Sparse-Banded Structure

运动规划 启发式 计算机科学 路径(计算) 数学优化 图形 人工智能 算法 机器人 数学 理论计算机科学 程序设计语言
作者
Jian Wen,Xuebo Zhang,Haiming Gao,Jing Yuan,Yongchun Fang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 2762-2775 被引量:10
标识
DOI:10.1109/tase.2021.3128521
摘要

To solve the autonomous navigation problem in complex environments, an efficient motion planning approach is newly presented in this paper. Considering the challenges from large-scale, partially unknown complex environments, a three-layer motion planning framework is elaborately designed, including global path planning, local path optimization, and time-optimal velocity planning. Compared with existing approaches, the novelty of this work is twofold: 1) a novel heuristic-guided pruning strategy of motion primitives is proposed and fully integrated into the state lattice-based global path planner to further improve the computational efficiency of graph search, and 2) a new soft-constrained local path optimization approach is proposed, wherein the sparse-banded system structure of the underlying optimization problem is fully exploited to efficiently solve the problem. We validate the safety, smoothness, flexibility, and efficiency of our approach in various complex simulation scenarios and challenging real-world tasks. It is shown that the computational efficiency is improved by 66.21% in the global planning stage and the motion efficiency of the robot is improved by 22.87% compared with the recent quintic Bézier curve-based state space sampling approach. We name the proposed motion planning framework E $\mathbf {^{3}} $ MoP, where the number 3 not only means our approach is a three-layer framework but also means the proposed approach is efficient in three stages. Note to Practitioners—This paper is motivated by the challenges of motion planning problems of mobile robots. A three-layer motion planning framework is proposed by combining global path planning, local path optimization, and time-optimal velocity planning. For mobile robot navigation applications in semi-structured environments, optimization-based local planners are recommended. Extensive simulation and experimental results show the effectiveness of the proposed motion planning framework. However, due to the non-convexity of the path optimization formulation, the proposed local planner may get stuck in local optima. In future research, we will concentrate on extending the proposed local path optimization approach with the theory of homology classes to maintain several homotopically distinct local paths and seek global optima.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
浏阳河发布了新的文献求助10
1秒前
z2发布了新的文献求助10
2秒前
没有锁骨的丑丑完成签到,获得积分10
3秒前
3秒前
睡觉觉了完成签到,获得积分10
3秒前
科研小白完成签到,获得积分10
4秒前
Lucas应助noit采纳,获得10
5秒前
Ammr完成签到 ,获得积分10
5秒前
7秒前
wali完成签到 ,获得积分0
7秒前
Akim应助xiaojuexian采纳,获得10
8秒前
丘比特应助何YI采纳,获得10
8秒前
北望发布了新的文献求助10
9秒前
SciGPT应助起床了吗采纳,获得10
9秒前
桐桐应助coconut采纳,获得10
13秒前
Arthur完成签到 ,获得积分10
13秒前
16秒前
情怀应助peng采纳,获得10
16秒前
niu应助科研小白采纳,获得10
17秒前
18秒前
20秒前
阿哲完成签到,获得积分20
20秒前
铁臂阿童木完成签到,获得积分10
20秒前
科研通AI2S应助AN77777采纳,获得10
22秒前
科研通AI5应助北望采纳,获得10
23秒前
23秒前
23秒前
23秒前
23秒前
skyhh完成签到,获得积分10
24秒前
noit完成签到,获得积分10
24秒前
123完成签到,获得积分10
24秒前
wangye关注了科研通微信公众号
26秒前
1111完成签到,获得积分10
26秒前
coconut发布了新的文献求助10
26秒前
seven发布了新的文献求助10
26秒前
28秒前
100发布了新的文献求助10
28秒前
noit发布了新的文献求助10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774527
求助须知:如何正确求助?哪些是违规求助? 3320227
关于积分的说明 10199137
捐赠科研通 3034929
什么是DOI,文献DOI怎么找? 1665282
邀请新用户注册赠送积分活动 796771
科研通“疑难数据库(出版商)”最低求助积分说明 757570