清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Recent Automatic Segmentation Algorithms of MRI Prostate Regions: A Review

计算机科学 分割 人工智能 图像分割 计算机视觉 算法
作者
Zia U. Khan,Norashikin Yahya,Khaled Alsaih,Mohammed Isam Al-Hiyali,Fabrice Mériaudeau
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 97878-97905 被引量:39
标识
DOI:10.1109/access.2021.3090825
摘要

World-wide incidence rate of prostate cancer has progressively increased with time especially with the increased proportion of elderly population. Early detection of prostate cancer when it is confined to the prostate gland has the best chance of successful treatment and increase in surviving rate. Prostate cancer occurrence rate varies over the three prostate regions, peripheral zone (PZ), transitional zone (TZ), and central zone (CZ) and this characteristic is one of the important considerations is development of segmentation algorithm. In fact, the occurrence rate of cancer PZ, TZ and CZ regions is respectively. at 70-80%, 10-20%, 5% or less. In general application of medical imaging, segmentation tasks can be time consuming for the expert to delineate the region of interest, especially when involving large numbers of images. In addition, the manual segmentation is subjective depending on the expert's experience. Hence, the need to develop automatic segmentation algorithms has rapidly increased along with the increased need of diagnostic tools for assisting medical practitioners, especially in the absence of radiologists. The prostate gland segmentation is challenging due to its shape variability in each zone from patient to patient and different tumor levels in each zone. This survey reviewed 22 machine learning and 88 deep learning-based segmentation of prostate MRI papers, including all MRI modalities. The review coverage includes the initial screening and imaging techniques, image pre-processing, segmentation techniques based on machine learning and deep learning techniques. Particular attention is given to different loss functions used for training segmentation based on deep learning techniques. Besides, a summary of publicly available prostate MRI image datasets is also provided. Finally, the future challenges and limitations of current deep learning-based approaches and suggestions of potential future research are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰富的绮山完成签到,获得积分10
7秒前
冰子完成签到 ,获得积分10
21秒前
跳跃的访琴完成签到 ,获得积分10
33秒前
哭泣的映寒完成签到 ,获得积分10
46秒前
vincy完成签到 ,获得积分10
53秒前
dbdxyty完成签到,获得积分10
1分钟前
寒战完成签到 ,获得积分10
1分钟前
荔枝波波加油完成签到 ,获得积分10
1分钟前
娇娇大王完成签到,获得积分10
1分钟前
xun发布了新的文献求助10
1分钟前
大个应助xun采纳,获得10
1分钟前
lwtsy完成签到,获得积分10
1分钟前
zhoulangorange完成签到 ,获得积分10
2分钟前
JamesPei应助尽我所能采纳,获得10
2分钟前
念工人完成签到,获得积分10
2分钟前
大雁完成签到 ,获得积分10
2分钟前
XMUZH完成签到 ,获得积分10
2分钟前
科研通AI2S应助MCCCCC_6采纳,获得30
2分钟前
theo完成签到 ,获得积分10
2分钟前
yinhe完成签到 ,获得积分10
2分钟前
2分钟前
罗小罗同学完成签到,获得积分10
2分钟前
尽我所能发布了新的文献求助10
2分钟前
尽我所能完成签到,获得积分10
3分钟前
陈秋完成签到,获得积分10
3分钟前
黄光完成签到,获得积分10
3分钟前
3分钟前
gaoxiaogao完成签到 ,获得积分10
3分钟前
xun发布了新的文献求助10
3分钟前
潇洒的语蝶完成签到 ,获得积分10
3分钟前
思源应助xun采纳,获得10
3分钟前
3分钟前
大熊发布了新的文献求助10
3分钟前
老宇126完成签到,获得积分10
3分钟前
3分钟前
xun发布了新的文献求助10
4分钟前
Lucas应助xun采纳,获得10
4分钟前
宸浅完成签到 ,获得积分10
4分钟前
清净163完成签到,获得积分10
4分钟前
4分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162359
求助须知:如何正确求助?哪些是违规求助? 2813331
关于积分的说明 7899783
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316544
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142