Artificial Intelligence-Based Toxicity Prediction of Environmental Chemicals: Future Directions for Chemical Management Applications

计算机科学 化学毒性 环境科学 生化工程 工程类 环境化学 水污染物 化学
作者
Jaeseong Jeong,Jinhee Choi
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (12): 7532-7543 被引量:109
标识
DOI:10.1021/acs.est.1c07413
摘要

Recently, research on the development of artificial intelligence (AI)-based computational toxicology models that predict toxicity without the use of animal testing has emerged because of the rapid development of computer technology. Various computational toxicology techniques that predict toxicity based on the structure of chemical substances are gaining attention, including the quantitative structure-activity relationship. To understand the recent development of these models, we analyzed the databases, molecular descriptors, fingerprints, and algorithms considered in recent studies. Based on a selection of 96 papers published since 2014, we found that AI models have been developed to predict approximately 30 different toxicity end points using more than 20 toxicity databases. For model development, molecular access system and extended-connectivity fingerprints are the most commonly used molecular descriptors. The most used algorithm among the machine learning techniques is the random forest, while the most used algorithm among the deep learning techniques is a deep neural network. The use of AI technology in the development of toxicity prediction models is a new concept that will aid in achieving a scientific accord and meet regulatory applications. The comprehensive overview provided in this study will provide a useful guide for the further development and application of toxicity prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助吞金小怪兽采纳,获得10
刚刚
李健的小迷弟应助史育川采纳,获得10
刚刚
汉堡包应助TXQ采纳,获得30
1秒前
Hello应助冷酷以太采纳,获得10
1秒前
今夜无人入眠完成签到,获得积分20
1秒前
斯文败类应助普通西瓜采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
布衣发布了新的文献求助10
2秒前
2秒前
可ke完成签到 ,获得积分10
2秒前
小样发布了新的文献求助10
2秒前
hebei应助开朗的鸵鸟采纳,获得10
3秒前
3秒前
梁岑晚发布了新的文献求助10
3秒前
3秒前
Sepvvvvirtue发布了新的文献求助10
3秒前
3秒前
4秒前
俏皮的安萱完成签到 ,获得积分10
4秒前
KKK完成签到,获得积分10
5秒前
5秒前
lemonyu发布了新的文献求助30
5秒前
5秒前
spc68应助摆烂的雨雨采纳,获得10
6秒前
脑洞疼应助LXl采纳,获得10
6秒前
7秒前
7秒前
kingnb发布了新的文献求助10
7秒前
俞晓发布了新的文献求助10
8秒前
8秒前
贵金属LiLi发布了新的文献求助10
8秒前
8秒前
花南星完成签到,获得积分10
8秒前
木木发布了新的文献求助10
8秒前
夏青完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389