Artificial Intelligence-Based Toxicity Prediction of Environmental Chemicals: Future Directions for Chemical Management Applications

计算机科学 化学毒性 环境科学 生化工程 工程类 环境化学 水污染物 化学
作者
Jaeseong Jeong,Jinhee Choi
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (12): 7532-7543 被引量:80
标识
DOI:10.1021/acs.est.1c07413
摘要

Recently, research on the development of artificial intelligence (AI)-based computational toxicology models that predict toxicity without the use of animal testing has emerged because of the rapid development of computer technology. Various computational toxicology techniques that predict toxicity based on the structure of chemical substances are gaining attention, including the quantitative structure–activity relationship. To understand the recent development of these models, we analyzed the databases, molecular descriptors, fingerprints, and algorithms considered in recent studies. Based on a selection of 96 papers published since 2014, we found that AI models have been developed to predict approximately 30 different toxicity end points using more than 20 toxicity databases. For model development, molecular access system and extended-connectivity fingerprints are the most commonly used molecular descriptors. The most used algorithm among the machine learning techniques is the random forest, while the most used algorithm among the deep learning techniques is a deep neural network. The use of AI technology in the development of toxicity prediction models is a new concept that will aid in achieving a scientific accord and meet regulatory applications. The comprehensive overview provided in this study will provide a useful guide for the further development and application of toxicity prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莹莹CY发布了新的文献求助30
1秒前
1秒前
852应助54189415采纳,获得10
2秒前
爬山虎发布了新的文献求助10
2秒前
灌汤包完成签到,获得积分10
3秒前
3秒前
4秒前
xixi789完成签到,获得积分10
5秒前
5552222发布了新的文献求助10
5秒前
wyq完成签到 ,获得积分10
5秒前
帅气男孩应助阔达苡采纳,获得10
5秒前
Hello应助清漪采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
mys发布了新的文献求助10
8秒前
8秒前
爬山虎完成签到,获得积分10
8秒前
Ben完成签到,获得积分10
10秒前
10秒前
gyh完成签到,获得积分10
10秒前
XMY147305完成签到,获得积分10
10秒前
yookia应助Eazin采纳,获得10
10秒前
战战欧巴发布了新的文献求助10
11秒前
11秒前
时尚俊驰发布了新的文献求助10
11秒前
叶液发布了新的文献求助30
11秒前
zdq10068发布了新的文献求助100
11秒前
13秒前
Christine应助吃花生酱的猫采纳,获得50
13秒前
13秒前
京城熬夜的荔枝完成签到,获得积分10
14秒前
夏天发布了新的文献求助10
14秒前
ziming313发布了新的文献求助10
15秒前
扶溪筠完成签到,获得积分10
16秒前
张张张___完成签到,获得积分10
16秒前
Kawhichan完成签到,获得积分10
16秒前
科目三应助11111采纳,获得10
16秒前
共享精神应助哈哈哈哈哈采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771