Optimization of a cryogenic liquid air energy storage system and its optimal thermodynamic performance

储能 气体压缩机 涡轮机 液化 等熵过程 可用能 工艺工程 总压比 可再生能源 核工程 火用 工程类 环境科学 功率(物理) 机械工程 热力学 电气工程 物理 岩土工程
作者
Hongbo Tan,Na Wen,Zhi Ding,Yanzhong Li
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (11): 15156-15173 被引量:4
标识
DOI:10.1002/er.8214
摘要

For grid-scale intermittent electricity storage, liquid air energy storage (LAES) is considered to be one of the most promising technologies for storing renewable energy. In this study, a steady-state process model was developed for an LAES, by combining a Linde liquefaction process and an open Rankine power cycle. To investigate the system performance and achieve global optimization, a single-factor analysis approach and multifactor genetic algorithm (GA) optimization model were built using MATLAB software. The effects of the charging pressure, storage pressure, discharging pressure, and isentropic efficiency of the compressor/turbine on the LAES performance parameters, such as the inlet temperature of the Joule–Thomson valve, round-trip efficiency (RTE), liquefaction ratio (LR), and power consumptions in the compressor, cryo-pump, and turbine, were investigated. Subsequently, the optimal conditions were obtained using the GA optimization method to achieve the optimal performance of the LAES. The results showed that the charging pressure, discharging pressure, and isentropic efficiencies of the compressor and turbine had significant effects on the RTE; an increase in the discharging pressure resulted in an improved expansion power output; the GA optimization could achieve RTE, LR, the system energy storage and recovery exergy efficiencies of 53.33%, 86.96%, 81.00%, and 78.16%; the power consumption in the compressor of GA optimization was 10.02% maximum saving. The proposed optimization method can be used to further explore the global optimization of cryogenic energy storage systems, such as different-layout LAES systems and different cryogenic liquefaction media energy storage systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助ddw采纳,获得10
1秒前
1秒前
1秒前
yao chen发布了新的文献求助10
2秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
4秒前
妮儿完成签到,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
XLL小绿绿完成签到,获得积分10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得20
5秒前
英姑应助ngldy采纳,获得10
5秒前
小米发布了新的文献求助10
5秒前
Rjj发布了新的文献求助10
5秒前
李健应助科研通管家采纳,获得20
5秒前
5秒前
大模型应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得20
6秒前
6秒前
李健应助科研通管家采纳,获得20
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760635
求助须知:如何正确求助?哪些是违规求助? 5525448
关于积分的说明 15397980
捐赠科研通 4897422
什么是DOI,文献DOI怎么找? 2634176
邀请新用户注册赠送积分活动 1582268
关于科研通互助平台的介绍 1537637