清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Decoding motor imagery with a simplified distributed dipoles model at source level

计算机科学 脑-机接口 脑电图 解码方法 偶极子 卷积神经网络 人工智能 模式识别(心理学) 运动表象 算法 神经科学 物理 心理学 量子力学
作者
Mingai Li,Zi-wei Ruan
出处
期刊:Cognitive Neurodynamics [Springer Science+Business Media]
标识
DOI:10.1007/s11571-022-09826-x
摘要

Motor imagery (MI) based brain computer interface significantly oriented the development of neuro-rehabilitation, and the crucial issue is how to accurately detect the changes of cerebral cortex for MI decoding. The brain activity can be calculated based on the head model and observed scalp EEG, providing insights regarding cortical dynamics by using equivalent current dipoles with high spatial and temporal resolution. Now, all the dipoles within entire cortex or partial regions of interest are directly applied to data representation, this may make the key information weakened or lost, and it is worth studying how to choose the most important from numerous dipoles. In this paper, we devote to building a simplified distributed dipoles model (SDDM), which is combined with convolutional neural network (CNN), generating a MI decoding method at source level (called SDDM-CNN). First, all channels of raw MI-EEG signals are subdivided by a series of bandpass filters with width of 1 Hz, the average energies associated with any sub-band signals are calculated and ranked in a descending order to screen the top n sub-bands; then, the MI-EEG signals over each selected sub-band are mapped into source space by using EEG source imaging technology, and for each scout of neuroanatomical Desikan-Killiany partition, a centered dipole is selected as the most relevant dipole and put together to build a SDDM to reflect the neuroelectric activity of entire cerebral cortex; finally, the 4 dimensional (4D) magnitude matrix is constructed for each SDDM and fused into a novel data representation, which is further input to a well-designed 3DCNN with n parallel branches (nB3DCNN) to extract and classify the comprehensive features from time–frequency-space dimensions. Experiments are carried out on three public datasets, and the average ten-fold CV decoding accuracies achieve 95.09%, 97.98% and 94.53% respectively, and the statistical analysis is fulfilled by standard deviation, kappa value and confusion matrix. Experiment results suggest that it is beneficial to pick out the most sensitive sub-bands in sensor domain, and SDDM can sufficiently describe the dynamic changing of entire cortex, improving decoding performance while greatly reducing number of source signals. Also, nB3DCNN is capable of exploring spatial–temporal features from multi sub-bands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZYP应助OCDer采纳,获得80
22秒前
32秒前
林夕完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
38秒前
合适忆丹完成签到,获得积分10
57秒前
法外潮湿宝贝完成签到 ,获得积分10
1分钟前
分析完成签到 ,获得积分10
1分钟前
Hello应助冷傲半邪采纳,获得30
1分钟前
冷傲半邪完成签到,获得积分10
2分钟前
fishss完成签到 ,获得积分10
2分钟前
2分钟前
斯文败类应助张静怡采纳,获得10
2分钟前
2分钟前
张静怡发布了新的文献求助10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
123完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助50
3分钟前
沈惠映完成签到 ,获得积分10
3分钟前
allrubbish完成签到,获得积分10
4分钟前
自然的含蕾完成签到 ,获得积分10
4分钟前
柠檬西米露完成签到,获得积分10
4分钟前
两个榴莲完成签到,获得积分0
5分钟前
5分钟前
ric发布了新的文献求助10
5分钟前
ric完成签到,获得积分10
5分钟前
5分钟前
沉沉完成签到 ,获得积分0
5分钟前
量子星尘发布了新的文献求助10
5分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
田様应助科研通管家采纳,获得10
6分钟前
斯文败类应助科研通管家采纳,获得10
6分钟前
饿哭了塞完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
dcm发布了新的文献求助10
8分钟前
月儿完成签到 ,获得积分10
8分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
8分钟前
Hello应助dcm采纳,获得10
8分钟前
MchemG应助科研通管家采纳,获得50
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612299
求助须知:如何正确求助?哪些是违规求助? 4017533
关于积分的说明 12436470
捐赠科研通 3699644
什么是DOI,文献DOI怎么找? 2040234
邀请新用户注册赠送积分活动 1073074
科研通“疑难数据库(出版商)”最低求助积分说明 956780