Decoding motor imagery with a simplified distributed dipoles model at source level

计算机科学 脑-机接口 脑电图 解码方法 偶极子 卷积神经网络 人工智能 模式识别(心理学) 运动表象 算法 神经科学 物理 心理学 量子力学
作者
Mingai Li,Zi-wei Ruan
出处
期刊:Cognitive Neurodynamics [Springer Nature]
标识
DOI:10.1007/s11571-022-09826-x
摘要

Motor imagery (MI) based brain computer interface significantly oriented the development of neuro-rehabilitation, and the crucial issue is how to accurately detect the changes of cerebral cortex for MI decoding. The brain activity can be calculated based on the head model and observed scalp EEG, providing insights regarding cortical dynamics by using equivalent current dipoles with high spatial and temporal resolution. Now, all the dipoles within entire cortex or partial regions of interest are directly applied to data representation, this may make the key information weakened or lost, and it is worth studying how to choose the most important from numerous dipoles. In this paper, we devote to building a simplified distributed dipoles model (SDDM), which is combined with convolutional neural network (CNN), generating a MI decoding method at source level (called SDDM-CNN). First, all channels of raw MI-EEG signals are subdivided by a series of bandpass filters with width of 1 Hz, the average energies associated with any sub-band signals are calculated and ranked in a descending order to screen the top n sub-bands; then, the MI-EEG signals over each selected sub-band are mapped into source space by using EEG source imaging technology, and for each scout of neuroanatomical Desikan-Killiany partition, a centered dipole is selected as the most relevant dipole and put together to build a SDDM to reflect the neuroelectric activity of entire cerebral cortex; finally, the 4 dimensional (4D) magnitude matrix is constructed for each SDDM and fused into a novel data representation, which is further input to a well-designed 3DCNN with n parallel branches (nB3DCNN) to extract and classify the comprehensive features from time–frequency-space dimensions. Experiments are carried out on three public datasets, and the average ten-fold CV decoding accuracies achieve 95.09%, 97.98% and 94.53% respectively, and the statistical analysis is fulfilled by standard deviation, kappa value and confusion matrix. Experiment results suggest that it is beneficial to pick out the most sensitive sub-bands in sensor domain, and SDDM can sufficiently describe the dynamic changing of entire cortex, improving decoding performance while greatly reducing number of source signals. Also, nB3DCNN is capable of exploring spatial–temporal features from multi sub-bands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Doctor完成签到 ,获得积分10
2秒前
realtimes完成签到,获得积分10
7秒前
锈了的xuebxuebi雪碧完成签到,获得积分10
9秒前
红领巾klj完成签到 ,获得积分10
10秒前
Clove完成签到 ,获得积分10
14秒前
橙子完成签到 ,获得积分10
16秒前
acffo完成签到 ,获得积分10
17秒前
suki完成签到 ,获得积分10
19秒前
jie完成签到 ,获得积分10
22秒前
酷酷涫完成签到 ,获得积分0
24秒前
只爱医学不爱你完成签到 ,获得积分10
25秒前
ZZ完成签到,获得积分10
26秒前
slowstar完成签到 ,获得积分10
26秒前
知识四面八方来完成签到 ,获得积分10
33秒前
orange完成签到 ,获得积分10
35秒前
幼荷完成签到 ,获得积分10
38秒前
维维完成签到 ,获得积分10
38秒前
46秒前
Eason Liu完成签到,获得积分10
48秒前
会发芽完成签到 ,获得积分10
49秒前
hhh完成签到,获得积分10
51秒前
51秒前
丹妮完成签到 ,获得积分10
54秒前
59秒前
午后狂睡完成签到 ,获得积分10
1分钟前
Chang完成签到 ,获得积分0
1分钟前
欣喜若灵发布了新的文献求助10
1分钟前
more完成签到 ,获得积分10
1分钟前
zzydada发布了新的文献求助20
1分钟前
小巧的怜晴完成签到,获得积分10
1分钟前
xz完成签到 ,获得积分10
1分钟前
王旭智完成签到,获得积分10
1分钟前
CWC完成签到,获得积分10
1分钟前
semigreen完成签到 ,获得积分10
1分钟前
李大宝完成签到 ,获得积分10
1分钟前
星豆豆完成签到 ,获得积分10
1分钟前
随便完成签到 ,获得积分10
1分钟前
one完成签到,获得积分10
1分钟前
hyjcs完成签到,获得积分10
1分钟前
祝英台完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155031
求助须知:如何正确求助?哪些是违规求助? 2805746
关于积分的说明 7865931
捐赠科研通 2464038
什么是DOI,文献DOI怎么找? 1311698
科研通“疑难数据库(出版商)”最低求助积分说明 629734
版权声明 601862