Simulation study on 3D convolutional neural networks for time-of-flight prediction in monolithic PET detectors using digitized waveforms

硅光电倍增管 溶血酶- 探测器 物理 光学 闪烁 巧合 半最大全宽 闪烁体 蒙特卡罗方法 卷积神经网络 计算机科学 人工智能 数学 统计 医学 病理 替代医学
作者
Jens Maebe,Stefaan Vandenberghe
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 125016-125016 被引量:12
标识
DOI:10.1088/1361-6560/ac73d3
摘要

Objective.We investigate the use of 3D convolutional neural networks for gamma arrival time estimation in monolithic scintillation detectors.Approach.The required data is obtained by Monte Carlo simulation in GATE v8.2, based on a 50 × 50 × 16 mm3monolithic LYSO crystal coupled to an 8 × 8 readout array of silicon photomultipliers (SiPMs). The electronic signals are simulated as a sum of bi-exponentional functions centered around the scintillation photon detection times. We include various effects of statistical fluctuations present in non-ideal SiPMs, such as dark counts and limited photon detection efficiency. The data was simulated for two distinct overvoltages of the SensL J-Series 60 035 SiPMs, in order to test the effects of different SiPM parameters. The neural network uses the array of detector waveforms, digitized at 10 GS s-1, to predict the time at which the gamma arrived at the crystal.Main results.Best results were achieved for an overvoltage of +6 V, at which point the SiPM reaches its optimal photon detection efficiency, resulting in a coincidence time resolution (CTR) of 141 ps full width at half maximum (FWHM). It is a 26% improvement compared to a simple averaging of the first few SiPM timestamps obtained by leading edge discrimination, which in comparison produced a CTR of 177 ps FWHM. In addition, better detector uniformity was achieved, although some degradation near the corners did remain.Significance.These improvements in time resolution can lead to higher signal-to-noise ratios in time-of-flight positron emission tomography, ultimately resulting in better diagnostic capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助shinn采纳,获得10
刚刚
刚刚
1秒前
面包发布了新的文献求助10
1秒前
1秒前
不吃香菜关注了科研通微信公众号
1秒前
负责中恶发布了新的文献求助20
1秒前
美妞儿~完成签到,获得积分10
1秒前
xiong0823完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
QY完成签到,获得积分10
2秒前
adai发布了新的文献求助10
3秒前
英俊的铭应助代沁采纳,获得10
3秒前
4秒前
明明完成签到,获得积分10
4秒前
王惟妙完成签到 ,获得积分10
4秒前
大模型应助yy采纳,获得10
5秒前
丘比特应助英勇海采纳,获得10
5秒前
6秒前
lyy发布了新的文献求助10
6秒前
6秒前
小陈栗子完成签到,获得积分20
6秒前
6秒前
6秒前
猕猴桃发布了新的文献求助10
7秒前
7秒前
7秒前
Jasper应助梅菜菜采纳,获得10
8秒前
小贝发布了新的文献求助10
8秒前
天天快乐应助豆豆采纳,获得10
8秒前
9秒前
美好芳发布了新的文献求助10
9秒前
胡德完成签到 ,获得积分10
9秒前
9秒前
9秒前
慕青应助成懂事长采纳,获得30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933