Simulation study on 3D convolutional neural networks for time-of-flight prediction in monolithic PET detectors using digitized waveforms

硅光电倍增管 溶血酶- 探测器 物理 光学 闪烁 巧合 半最大全宽 闪烁体 蒙特卡罗方法 卷积神经网络 计算机科学 人工智能 数学 医学 统计 替代医学 病理
作者
Jens Maebe,Stefaan Vandenberghe
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 125016-125016 被引量:12
标识
DOI:10.1088/1361-6560/ac73d3
摘要

Objective.We investigate the use of 3D convolutional neural networks for gamma arrival time estimation in monolithic scintillation detectors.Approach.The required data is obtained by Monte Carlo simulation in GATE v8.2, based on a 50 × 50 × 16 mm3monolithic LYSO crystal coupled to an 8 × 8 readout array of silicon photomultipliers (SiPMs). The electronic signals are simulated as a sum of bi-exponentional functions centered around the scintillation photon detection times. We include various effects of statistical fluctuations present in non-ideal SiPMs, such as dark counts and limited photon detection efficiency. The data was simulated for two distinct overvoltages of the SensL J-Series 60 035 SiPMs, in order to test the effects of different SiPM parameters. The neural network uses the array of detector waveforms, digitized at 10 GS s-1, to predict the time at which the gamma arrived at the crystal.Main results.Best results were achieved for an overvoltage of +6 V, at which point the SiPM reaches its optimal photon detection efficiency, resulting in a coincidence time resolution (CTR) of 141 ps full width at half maximum (FWHM). It is a 26% improvement compared to a simple averaging of the first few SiPM timestamps obtained by leading edge discrimination, which in comparison produced a CTR of 177 ps FWHM. In addition, better detector uniformity was achieved, although some degradation near the corners did remain.Significance.These improvements in time resolution can lead to higher signal-to-noise ratios in time-of-flight positron emission tomography, ultimately resulting in better diagnostic capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小皮蛋完成签到,获得积分10
刚刚
依依应助文子采纳,获得10
刚刚
赘婿应助xmy采纳,获得10
刚刚
刚刚
刚刚
yaoyao110完成签到,获得积分10
刚刚
可可发布了新的文献求助10
1秒前
1秒前
2秒前
NexusExplorer应助ckl采纳,获得10
2秒前
sam发布了新的文献求助10
2秒前
梦和糖发布了新的文献求助30
3秒前
3秒前
3秒前
赘婿应助niu采纳,获得10
3秒前
3秒前
奕娇完成签到,获得积分10
3秒前
4秒前
5秒前
zhc990807发布了新的文献求助10
5秒前
马蹄完成签到,获得积分10
5秒前
袁佳铖完成签到,获得积分10
6秒前
8秒前
战兔完成签到,获得积分10
9秒前
9秒前
CC发布了新的文献求助10
9秒前
charm12发布了新的文献求助10
9秒前
大模型应助秦苏采纳,获得10
11秒前
sp发布了新的文献求助10
11秒前
无花果应助务实涔雨采纳,获得10
11秒前
fendy完成签到,获得积分0
11秒前
14秒前
科研天才韦某完成签到,获得积分20
14秒前
酷炫小甜瓜完成签到 ,获得积分10
15秒前
16秒前
动点子智慧完成签到,获得积分10
16秒前
小巧忆粥应助爱过我如果采纳,获得10
16秒前
16秒前
赘婿应助sp采纳,获得10
17秒前
胡萝卜完成签到,获得积分10
17秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3083043
求助须知:如何正确求助?哪些是违规求助? 2736283
关于积分的说明 7540658
捐赠科研通 2385697
什么是DOI,文献DOI怎么找? 1265066
科研通“疑难数据库(出版商)”最低求助积分说明 612909
版权声明 597702