亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Simulation study on 3D convolutional neural networks for time-of-flight prediction in monolithic PET detectors using digitized waveforms

硅光电倍增管 溶血酶- 探测器 物理 光学 闪烁 巧合 半最大全宽 闪烁体 蒙特卡罗方法 卷积神经网络 计算机科学 人工智能 数学 统计 医学 病理 替代医学
作者
Jens Maebe,Stefaan Vandenberghe
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 125016-125016 被引量:12
标识
DOI:10.1088/1361-6560/ac73d3
摘要

Objective.We investigate the use of 3D convolutional neural networks for gamma arrival time estimation in monolithic scintillation detectors.Approach.The required data is obtained by Monte Carlo simulation in GATE v8.2, based on a 50 × 50 × 16 mm3monolithic LYSO crystal coupled to an 8 × 8 readout array of silicon photomultipliers (SiPMs). The electronic signals are simulated as a sum of bi-exponentional functions centered around the scintillation photon detection times. We include various effects of statistical fluctuations present in non-ideal SiPMs, such as dark counts and limited photon detection efficiency. The data was simulated for two distinct overvoltages of the SensL J-Series 60 035 SiPMs, in order to test the effects of different SiPM parameters. The neural network uses the array of detector waveforms, digitized at 10 GS s-1, to predict the time at which the gamma arrived at the crystal.Main results.Best results were achieved for an overvoltage of +6 V, at which point the SiPM reaches its optimal photon detection efficiency, resulting in a coincidence time resolution (CTR) of 141 ps full width at half maximum (FWHM). It is a 26% improvement compared to a simple averaging of the first few SiPM timestamps obtained by leading edge discrimination, which in comparison produced a CTR of 177 ps FWHM. In addition, better detector uniformity was achieved, although some degradation near the corners did remain.Significance.These improvements in time resolution can lead to higher signal-to-noise ratios in time-of-flight positron emission tomography, ultimately resulting in better diagnostic capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
情怀应助一直很随意采纳,获得10
11秒前
15秒前
我是老大应助Rainy采纳,获得10
17秒前
20秒前
烟花应助一直很随意采纳,获得10
32秒前
35秒前
yb完成签到,获得积分10
36秒前
怀民完成签到 ,获得积分10
47秒前
olekravchenko发布了新的文献求助10
52秒前
weibo完成签到,获得积分10
55秒前
无尽夏完成签到 ,获得积分10
1分钟前
等待寄云完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
我哪知道怎么完成签到 ,获得积分10
1分钟前
可可完成签到 ,获得积分10
1分钟前
YJY完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
Criminology34应助3333橙采纳,获得10
2分钟前
2分钟前
2分钟前
酷酷的铸海完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3333橙完成签到,获得积分10
2分钟前
小黑妞发布了新的文献求助10
2分钟前
???发布了新的文献求助10
2分钟前
凌奕添完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
牛油果发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763940
求助须知:如何正确求助?哪些是违规求助? 5545976
关于积分的说明 15405652
捐赠科研通 4899452
什么是DOI,文献DOI怎么找? 2635572
邀请新用户注册赠送积分活动 1583750
关于科研通互助平台的介绍 1538864