Simulation study on 3D convolutional neural networks for time-of-flight prediction in monolithic PET detectors using digitized waveforms

硅光电倍增管 溶血酶- 探测器 物理 光学 闪烁 巧合 半最大全宽 闪烁体 蒙特卡罗方法 卷积神经网络 计算机科学 人工智能 数学 医学 统计 替代医学 病理
作者
Jens Maebe,Stefaan Vandenberghe
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 125016-125016 被引量:12
标识
DOI:10.1088/1361-6560/ac73d3
摘要

Objective.We investigate the use of 3D convolutional neural networks for gamma arrival time estimation in monolithic scintillation detectors.Approach.The required data is obtained by Monte Carlo simulation in GATE v8.2, based on a 50 × 50 × 16 mm3monolithic LYSO crystal coupled to an 8 × 8 readout array of silicon photomultipliers (SiPMs). The electronic signals are simulated as a sum of bi-exponentional functions centered around the scintillation photon detection times. We include various effects of statistical fluctuations present in non-ideal SiPMs, such as dark counts and limited photon detection efficiency. The data was simulated for two distinct overvoltages of the SensL J-Series 60 035 SiPMs, in order to test the effects of different SiPM parameters. The neural network uses the array of detector waveforms, digitized at 10 GS s-1, to predict the time at which the gamma arrived at the crystal.Main results.Best results were achieved for an overvoltage of +6 V, at which point the SiPM reaches its optimal photon detection efficiency, resulting in a coincidence time resolution (CTR) of 141 ps full width at half maximum (FWHM). It is a 26% improvement compared to a simple averaging of the first few SiPM timestamps obtained by leading edge discrimination, which in comparison produced a CTR of 177 ps FWHM. In addition, better detector uniformity was achieved, although some degradation near the corners did remain.Significance.These improvements in time resolution can lead to higher signal-to-noise ratios in time-of-flight positron emission tomography, ultimately resulting in better diagnostic capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
瑶一瑶完成签到,获得积分10
刚刚
接受所有饼干完成签到,获得积分10
刚刚
富贵儿完成签到,获得积分10
1秒前
MHB应助Khr1stINK采纳,获得10
1秒前
cinderella完成签到,获得积分10
2秒前
3秒前
lin发布了新的文献求助10
4秒前
tmpstlml完成签到,获得积分10
4秒前
LUNWENREQUEST完成签到,获得积分20
4秒前
4秒前
Orange应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
RC_Wang应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得30
5秒前
111发布了新的文献求助10
6秒前
keyanlv完成签到,获得积分10
6秒前
富贵儿发布了新的文献求助10
8秒前
冯度翩翩完成签到,获得积分10
8秒前
sweetbearm应助健壮的涑采纳,获得10
8秒前
村里傻小子完成签到,获得积分20
8秒前
田様应助Khr1stINK采纳,获得10
9秒前
傲娇的凡旋应助小周采纳,获得10
10秒前
潇潇潇完成签到 ,获得积分10
10秒前
11秒前
英俊的铭应助XShu采纳,获得10
12秒前
Hello应助一只大肥猫采纳,获得10
13秒前
allyceacheng完成签到,获得积分10
13秒前
科研通AI5应助phd采纳,获得10
14秒前
14秒前
WTaMi完成签到 ,获得积分10
14秒前
zoe发布了新的文献求助10
14秒前
Owen应助无奈的酒窝采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808