Simulation study on 3D convolutional neural networks for time-of-flight prediction in monolithic PET detectors using digitized waveforms

硅光电倍增管 溶血酶- 探测器 物理 光学 闪烁 巧合 半最大全宽 闪烁体 蒙特卡罗方法 卷积神经网络 计算机科学 人工智能 数学 医学 统计 替代医学 病理
作者
Jens Maebe,Stefaan Vandenberghe
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 125016-125016 被引量:12
标识
DOI:10.1088/1361-6560/ac73d3
摘要

Objective.We investigate the use of 3D convolutional neural networks for gamma arrival time estimation in monolithic scintillation detectors.Approach.The required data is obtained by Monte Carlo simulation in GATE v8.2, based on a 50 × 50 × 16 mm3monolithic LYSO crystal coupled to an 8 × 8 readout array of silicon photomultipliers (SiPMs). The electronic signals are simulated as a sum of bi-exponentional functions centered around the scintillation photon detection times. We include various effects of statistical fluctuations present in non-ideal SiPMs, such as dark counts and limited photon detection efficiency. The data was simulated for two distinct overvoltages of the SensL J-Series 60 035 SiPMs, in order to test the effects of different SiPM parameters. The neural network uses the array of detector waveforms, digitized at 10 GS s-1, to predict the time at which the gamma arrived at the crystal.Main results.Best results were achieved for an overvoltage of +6 V, at which point the SiPM reaches its optimal photon detection efficiency, resulting in a coincidence time resolution (CTR) of 141 ps full width at half maximum (FWHM). It is a 26% improvement compared to a simple averaging of the first few SiPM timestamps obtained by leading edge discrimination, which in comparison produced a CTR of 177 ps FWHM. In addition, better detector uniformity was achieved, although some degradation near the corners did remain.Significance.These improvements in time resolution can lead to higher signal-to-noise ratios in time-of-flight positron emission tomography, ultimately resulting in better diagnostic capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马哥完成签到,获得积分10
1秒前
1秒前
1秒前
壮观的擎发布了新的文献求助30
3秒前
Hmc完成签到 ,获得积分10
3秒前
dong应助xrl采纳,获得10
3秒前
4秒前
小猪佩奇完成签到,获得积分10
4秒前
4秒前
luogan完成签到,获得积分10
5秒前
兰天发布了新的文献求助30
5秒前
爆米花应助FFFFF采纳,获得10
5秒前
我是老大应助Wongradona采纳,获得10
6秒前
淡淡梦容发布了新的文献求助200
8秒前
帅气冥王星完成签到 ,获得积分10
8秒前
8秒前
小代发布了新的文献求助10
10秒前
EMM完成签到 ,获得积分10
10秒前
12秒前
深情安青应助壮观的擎采纳,获得10
13秒前
xf发布了新的文献求助10
14秒前
14秒前
14秒前
16秒前
17秒前
小巧谷波应助linxc07采纳,获得10
17秒前
18秒前
18秒前
taco发布了新的文献求助10
19秒前
19秒前
乐乐应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
20秒前
芙瑞发布了新的文献求助10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
21秒前
传奇3应助天真皓轩采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959633
求助须知:如何正确求助?哪些是违规求助? 3505879
关于积分的说明 11126688
捐赠科研通 3237840
什么是DOI,文献DOI怎么找? 1789380
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963