Simulation study on 3D convolutional neural networks for time-of-flight prediction in monolithic PET detectors using digitized waveforms

硅光电倍增管 溶血酶- 探测器 物理 光学 闪烁 巧合 半最大全宽 闪烁体 蒙特卡罗方法 卷积神经网络 计算机科学 人工智能 数学 统计 医学 病理 替代医学
作者
Jens Maebe,Stefaan Vandenberghe
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 125016-125016 被引量:12
标识
DOI:10.1088/1361-6560/ac73d3
摘要

Objective.We investigate the use of 3D convolutional neural networks for gamma arrival time estimation in monolithic scintillation detectors.Approach.The required data is obtained by Monte Carlo simulation in GATE v8.2, based on a 50 × 50 × 16 mm3monolithic LYSO crystal coupled to an 8 × 8 readout array of silicon photomultipliers (SiPMs). The electronic signals are simulated as a sum of bi-exponentional functions centered around the scintillation photon detection times. We include various effects of statistical fluctuations present in non-ideal SiPMs, such as dark counts and limited photon detection efficiency. The data was simulated for two distinct overvoltages of the SensL J-Series 60 035 SiPMs, in order to test the effects of different SiPM parameters. The neural network uses the array of detector waveforms, digitized at 10 GS s-1, to predict the time at which the gamma arrived at the crystal.Main results.Best results were achieved for an overvoltage of +6 V, at which point the SiPM reaches its optimal photon detection efficiency, resulting in a coincidence time resolution (CTR) of 141 ps full width at half maximum (FWHM). It is a 26% improvement compared to a simple averaging of the first few SiPM timestamps obtained by leading edge discrimination, which in comparison produced a CTR of 177 ps FWHM. In addition, better detector uniformity was achieved, although some degradation near the corners did remain.Significance.These improvements in time resolution can lead to higher signal-to-noise ratios in time-of-flight positron emission tomography, ultimately resulting in better diagnostic capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Danielle完成签到,获得积分10
刚刚
00发布了新的文献求助10
刚刚
lalala发布了新的文献求助10
刚刚
Xu发布了新的文献求助10
1秒前
1秒前
佳佳发布了新的文献求助10
1秒前
wangxuan完成签到,获得积分10
1秒前
sunyuan发布了新的文献求助10
1秒前
Sci完成签到,获得积分10
2秒前
冬至完成签到,获得积分10
2秒前
2秒前
夏侯觅风完成签到,获得积分10
3秒前
3秒前
Simone驳回了Akim应助
3秒前
luqianling完成签到 ,获得积分10
4秒前
温瞳完成签到,获得积分10
4秒前
九月鹰飞发布了新的文献求助10
5秒前
土豆丝完成签到 ,获得积分10
5秒前
JamesPei应助吴中秋采纳,获得10
6秒前
xyzdmmm完成签到,获得积分10
7秒前
chunchun完成签到,获得积分10
7秒前
无奈的惜蕊完成签到,获得积分10
7秒前
夏侯觅风发布了新的文献求助10
7秒前
lzhgoashore完成签到,获得积分10
8秒前
迷路的翠容完成签到,获得积分10
8秒前
LHL完成签到,获得积分10
8秒前
8秒前
zy完成签到,获得积分10
8秒前
focus完成签到 ,获得积分10
9秒前
轰车车发布了新的文献求助10
9秒前
坚强的迎天完成签到,获得积分10
9秒前
高挑的棕色蛟龙完成签到,获得积分10
9秒前
缓慢的高山完成签到,获得积分10
9秒前
10秒前
小医小鱼发布了新的文献求助20
10秒前
星星完成签到,获得积分10
10秒前
12秒前
gzy关闭了gzy文献求助
12秒前
Leexxxhaoo完成签到,获得积分10
12秒前
泌尿刘亚东完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977