Simulation study on 3D convolutional neural networks for time-of-flight prediction in monolithic PET detectors using digitized waveforms

硅光电倍增管 溶血酶- 探测器 物理 光学 闪烁 巧合 半最大全宽 闪烁体 蒙特卡罗方法 卷积神经网络 计算机科学 人工智能 数学 统计 医学 病理 替代医学
作者
Jens Maebe,Stefaan Vandenberghe
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 125016-125016 被引量:12
标识
DOI:10.1088/1361-6560/ac73d3
摘要

Objective.We investigate the use of 3D convolutional neural networks for gamma arrival time estimation in monolithic scintillation detectors.Approach.The required data is obtained by Monte Carlo simulation in GATE v8.2, based on a 50 × 50 × 16 mm3monolithic LYSO crystal coupled to an 8 × 8 readout array of silicon photomultipliers (SiPMs). The electronic signals are simulated as a sum of bi-exponentional functions centered around the scintillation photon detection times. We include various effects of statistical fluctuations present in non-ideal SiPMs, such as dark counts and limited photon detection efficiency. The data was simulated for two distinct overvoltages of the SensL J-Series 60 035 SiPMs, in order to test the effects of different SiPM parameters. The neural network uses the array of detector waveforms, digitized at 10 GS s-1, to predict the time at which the gamma arrived at the crystal.Main results.Best results were achieved for an overvoltage of +6 V, at which point the SiPM reaches its optimal photon detection efficiency, resulting in a coincidence time resolution (CTR) of 141 ps full width at half maximum (FWHM). It is a 26% improvement compared to a simple averaging of the first few SiPM timestamps obtained by leading edge discrimination, which in comparison produced a CTR of 177 ps FWHM. In addition, better detector uniformity was achieved, although some degradation near the corners did remain.Significance.These improvements in time resolution can lead to higher signal-to-noise ratios in time-of-flight positron emission tomography, ultimately resulting in better diagnostic capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助叶子宁采纳,获得30
刚刚
1秒前
乌波饲养员完成签到,获得积分10
1秒前
深情安青应助蓝心采纳,获得10
1秒前
香蕉觅云应助344061512采纳,获得10
2秒前
薖上发布了新的文献求助10
2秒前
2秒前
Lcx完成签到 ,获得积分10
2秒前
2秒前
o海边风o发布了新的文献求助10
2秒前
济南青年完成签到,获得积分10
3秒前
3秒前
深情安青应助koral采纳,获得10
3秒前
prtrichor599完成签到,获得积分10
4秒前
4秒前
4秒前
领导范儿应助怪物史莱克采纳,获得10
4秒前
hk666完成签到,获得积分10
4秒前
5秒前
NexusExplorer应助卡卡采纳,获得10
5秒前
KIM发布了新的文献求助10
5秒前
5秒前
酷波er应助nihao采纳,获得10
5秒前
KRYSTAL完成签到,获得积分10
5秒前
5秒前
Jennie发布了新的文献求助10
6秒前
ww完成签到,获得积分10
7秒前
7秒前
jiajiajiamin完成签到,获得积分10
7秒前
ARES昔年完成签到,获得积分10
8秒前
能姐发布了新的文献求助10
8秒前
8秒前
Owen应助果粒橙橙子采纳,获得10
8秒前
薖上完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
kkk发布了新的文献求助10
9秒前
英姑应助黑叔叔采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759534
求助须知:如何正确求助?哪些是违规求助? 5520722
关于积分的说明 15394460
捐赠科研通 4896615
什么是DOI,文献DOI怎么找? 2633799
邀请新用户注册赠送积分活动 1581879
关于科研通互助平台的介绍 1537300