亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatial–temporal short-term traffic flow prediction model based on dynamical-learning graph convolution mechanism

计算机科学 图形 邻接矩阵 期限(时间) 数据挖掘 集合(抽象数据类型) 算法 流量(计算机网络) 人工智能 卷积(计算机科学) 理论计算机科学 人工神经网络 计算机安全 量子力学 物理 程序设计语言
作者
Zhijun Chen,Zhe Lü,Qiushi Chen,Hongliang Zhong,Yishi Zhang,Jie Xue,Chaozhong Wu
出处
期刊:Information Sciences [Elsevier]
卷期号:611: 522-539 被引量:43
标识
DOI:10.1016/j.ins.2022.08.080
摘要

Short-term traffic flow prediction is a core branch of intelligent traffic systems (ITS) and plays an important role in traffic management. The graph convolution network (GCN) is widely used in traffic prediction models to efficiently handle the graphical structural data of road networks. However, the influence weights among different road sections are usually distinct in real life and are difficult to analyze manually. The traditional GCN mechanism, which relies on a manually set adjacency matrix, is unable to dynamically learn such spatial patterns during training. To address this drawback, this study proposes a novel location graph convolutional network (location-GCN). The location-GCN solves this problem by adding a new learnable matrix to the GCN mechanism, using the absolute value of this matrix to represent the distinct influence levels among different nodes. Subsequently, long short-term memory (LSTM) is employed in the proposed traffic prediction model. Moreover, trigonometric function encoding was used in this study to enable the short-term input sequence to convey long-term periodic information. Finally, the proposed model was compared with the baseline models and evaluated on two real-world traffic flow datasets. The results show that our model is more accurate and robust than the other representative traffic prediction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
35秒前
37秒前
liuliu发布了新的文献求助30
46秒前
53秒前
烟花应助Li采纳,获得10
55秒前
liuliu完成签到,获得积分20
1分钟前
1分钟前
1分钟前
ataybabdallah完成签到,获得积分10
1分钟前
1分钟前
1分钟前
开朗大雁完成签到 ,获得积分10
1分钟前
上官若男应助Marshall采纳,获得10
1分钟前
2分钟前
2分钟前
Marshall发布了新的文献求助10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
kdjm688完成签到,获得积分10
2分钟前
彭于晏应助蓝色牛马采纳,获得10
2分钟前
2分钟前
蓝色牛马发布了新的文献求助10
2分钟前
3分钟前
3分钟前
9527完成签到,获得积分10
3分钟前
Li发布了新的文献求助10
3分钟前
优美芸发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助30
3分钟前
3分钟前
科研通AI2S应助Li采纳,获得10
3分钟前
JamesPei应助Li采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788626
求助须知:如何正确求助?哪些是违规求助? 5709683
关于积分的说明 15473737
捐赠科研通 4916631
什么是DOI,文献DOI怎么找? 2646497
邀请新用户注册赠送积分活动 1594168
关于科研通互助平台的介绍 1548580