A low-cost and eco-friendly powder catalyst: Iron and copper nanoparticles supported on biochar/geopolymer for activating potassium peroxymonosulfate to degrade naphthalene in water and soil

生物炭 化学 环境修复 催化作用 聚合物 核化学 环境化学 污染 有机化学 热解 生态学 粉煤灰 生物
作者
Yifan Zhu,Shanguo Ji,Wenxu Liang,Changyu Li,Yongxin Nie,Jing Dong,Wenxin Shi,Shiyun Ai
出处
期刊:Chemosphere [Elsevier]
卷期号:303: 135185-135185 被引量:22
标识
DOI:10.1016/j.chemosphere.2022.135185
摘要

A low-cost and environment-friendly biochar/geopolymer composite loaded with Fe and Cu nanoparticles (Fe-Cu@BC-GM) was prepared by impregnation-calcination using lignin and kaolin as precursors. SEM, FTIR and XRD analysis suggested that the Fe-Cu@BC-GM had a certain pore structure, rich functional groups and stable crystal structure. The obtained Fe-Cu@BC-GM was used as the catalyst of potassium peroxymonosulfate (PMS) for remediation of wastewater and soil polluted by naphthalene (NAP). Experimental results indicated that Fe-Cu@BC-GM exhibited outstanding catalytic performance, and the maximum degradation rate of NAP in water and soil reached 98.35% and 67.98% within 120 min, respectively. The XPS measurement confirmed the presence of successive Fe (Ⅲ)/Fe (Ⅱ) and Cu(Ⅱ)/Cu(Ⅰ) redox pairs cycles on the surface of Fe-Cu@BC-GM, which made Fe (Ⅲ) and Cu(Ⅰ) continuously generated Fe (Ⅱ) activating PMS to produce SO4·- and ·OH for the degradation of NAP. The effects of Fe-Cu@BC-GM/PMS system on plant toxicity were evaluated by analyzing the degradation intermediates and bioassay of mung bean. It was proved that the Fe-Cu@BC-GM/PMS system could degrade NAP into less toxic intermediates, and the seed germination rate, root and stem length of mung bean after soil remediation were not notably different from those of the uncontaminated soil. This work opened new prospect for the application of geopolymer in degradation of persistent organic pollutants (POPs) and provided a cost-effective option for the remediation of the persistent organic pollutants contaminated water and soil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张八完成签到 ,获得积分10
3秒前
路宝发布了新的文献求助10
4秒前
xmhxpz发布了新的文献求助10
4秒前
5秒前
Lshyong完成签到 ,获得积分10
6秒前
7秒前
典雅雅旋发布了新的文献求助10
7秒前
解惑完成签到,获得积分20
8秒前
8秒前
酷波er应助diiiho采纳,获得10
9秒前
烂漫以柳关注了科研通微信公众号
9秒前
陈思完成签到,获得积分10
11秒前
阳光的伊发布了新的文献求助10
12秒前
LEETHEO完成签到,获得积分10
12秒前
天天快乐应助Hou采纳,获得10
12秒前
12秒前
13秒前
13秒前
传奇3应助ri_290采纳,获得10
13秒前
解惑发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
16秒前
捂脸怪完成签到,获得积分10
17秒前
欣欣发布了新的文献求助10
17秒前
NOSIN完成签到 ,获得积分10
18秒前
优雅狗完成签到,获得积分10
18秒前
重要冷雁发布了新的文献求助10
18秒前
20秒前
xiaolan完成签到,获得积分10
21秒前
LIn发布了新的文献求助10
21秒前
22秒前
CodeCraft应助朱荧荧采纳,获得10
23秒前
23秒前
搜集达人应助Lianna采纳,获得20
25秒前
英姑应助飞快的惜芹采纳,获得10
25秒前
榴下晨光完成签到 ,获得积分10
27秒前
28秒前
科研通AI2S应助解惑采纳,获得10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312139
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521299
捐赠科研通 2620463
什么是DOI,文献DOI怎么找? 1432849
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115