The consistent motivation to observe molecular electronics and quantum effects drives the need for the tunable and robust fabrication of nanogap devices. Electron beam lithography (EBL) offers high fidelity fabrication to construct arrayed nanogaps, and methods have been developed to achieve sub-10 nm channel widths. However, many of these approaches involve multiple lithography steps or specialized techniques that limit throughput and universality. This work describes a simple, single EBL step, continuous dose, and direct feature write method of fabricating electrode pairs with nanogap spacing from 5 to 40 nm. This straightforward technique relies on precise electron beam focusing coupled with cold lithography for developing. Overall, this protocol enables efficient production of electrode nanogaps to facilitate the study of nanoscale materials and effects. • Simple methodology to achieve sub-10 nm nanogap electrode pairs. • Patterning uses only one electron beam lithography step and common components. • Precision achieved by systematic focusing and cold lithography for developing. • Nanogap electrode pairs achieved with channel lengths ranging from 5 to 40 nm.