超高速
光滑粒子流体力学
航天器
分手
射弹
有限元法
空间碎片
机械
计算机模拟
联轴节(管道)
航空航天工程
物理
结构工程
工程类
机械工程
量子力学
热力学
作者
Yanxi Zhang,Fengjiang An,Shasha Liao,C.T. Wu,Jian Liu,Yipeng Li
出处
期刊:Aerospace
[MDPI AG]
日期:2021-12-25
卷期号:9 (1): 12-12
被引量:6
标识
DOI:10.3390/aerospace9010012
摘要
This paper aims to study the difference of results in breakup state judgment, debris cloud and fragment characteristic parameter during hypervelocity impact (HVI) on large-scale complex spacecraft structures by various numerical simulation methods. We compared the results of the test of aluminum projectile impact on an aluminum plate with the simulation results of the smooth particle hydrodynamics (SPH), finite element method (FEM)-smoothed particle Galerkin (SPG) fixed coupling method, node separation method, and finite element method-smooth particle hydrodynamics adaptive coupling method under varying mesh/particle sizes. Then based on the test of the complex simulated satellite under hypervelocity impact of space debris, the most applicable algorithm was selected and used to verify the accuracy of the calculation results. It was found that the finite element method-smooth particle hydrodynamics adaptive coupling method has lower mesh sensitivity in displaying the contour of the debris cloud and calculating its characteristic parameters, making it more suitable for the full-scale numerical simulation of hypervelocity impact. Moreover, this algorithm can simulate the macro breakup state of the full-scale model with complex structure and output debris fragments with clear boundaries and accurate shapes. This study provides numerical simulation method options for the follow-up research on breakup conditions, damage effects, debris clouds, and fragment characteristics of large-scale complex spacecraft.
科研通智能强力驱动
Strongly Powered by AbleSci AI