清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A machine learning framework for risk prediction of multi-label cardiovascular events based on focused carotid plaque B-Mode ultrasound: A Canadian study

医学 人口统计学的 超声波 人工智能 曲线下面积 冠状动脉疾病 内科学 机器学习 心脏病学 放射科 计算机科学 社会学 人口学
作者
Ankush D. Jamthikar,Deep Gupta,Amer M. Johri,Laura E. Mantella,Luca Saba,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:140: 105102-105102 被引量:28
标识
DOI:10.1016/j.compbiomed.2021.105102
摘要

Machine learning (ML) algorithms can provide better cardiovascular event (CVE) prediction. However, ML algorithms are mostly explored for predicting a single CVE at a time. The objective of this study is to design and develop an ML-based system to predict multi-label CVEs, such as (i) coronary artery disease, (ii) acute coronary syndrome, and (iii) a composite CVE-a class of AtheroEdge 3.0 (ML) system.Focused carotid B-mode ultrasound and coronary angiography are performed on a group of 459 participants consisting of three cardiovascular labels. Initially, 23 risk predictors comprising (i) patients' demographics, (ii) clinical blood-biomarkers, and (iii) carotid ultrasound image-based phenotypes are collected. Six types of classification techniques comprising (a) four problem transformation methods (PTM) and (b) two algorithm adaptation methods (AAM) are used for multi-label CVE prediction. The performance of the proposed system is evaluated for accuracy, sensitivity, specificity, F1-score, and area-under-the-curve (AUC) using 10-fold cross-validation. The proposed system is also verified using another database of 522 participants.For the primary database, PTM demonstrated a better multi-label CVE prediction than AAM (mean accuracy: 80.89% vs. 62.83%, mean AUC: 0.89 vs. 0.63), validating our hypothesis. The PTM-based binary relevance (BR) technique provided optimal performance in multi-label CVE prediction. The overall multi-label classification accuracy, sensitivity, specificity, F1-score, and AUC using BR are 81.2 ± 3.01%, 76.5 ± 8.8%, 83.8 ± 3.8%, 75.37 ± 5.8%, and 0.89 ± 0.02 (p < 0.0001), respectively. When used on the second Canadian database with seven cardiovascular events (acute coronary syndrome, myocardial infarction, angina, stroke, transient ischemic attack, heart failure, and death), the proposed system showed an accuracy of 96.36 ± 0.87% (AUC: 0.61 ± 0.06, p < 0.0001).ML-based multi-label classification algorithms, such as binary relevance, yielded the best predictions for three cardiovascular endpoints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得10
16秒前
hhh2018687完成签到,获得积分10
22秒前
科研通AI2S应助ceeray23采纳,获得20
30秒前
忘忧Aquarius完成签到,获得积分10
34秒前
wujiwuhui完成签到 ,获得积分10
39秒前
Lny发布了新的文献求助30
1分钟前
sh1ro完成签到,获得积分10
1分钟前
luang应助ceeray23采纳,获得40
1分钟前
1分钟前
ww完成签到,获得积分10
1分钟前
斯文败类应助ceeray23采纳,获得20
1分钟前
机智秋莲发布了新的文献求助20
2分钟前
ChatGPT完成签到,获得积分10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
海阔天空完成签到 ,获得积分10
2分钟前
zys发布了新的文献求助10
3分钟前
ffdhdh应助LYZSh采纳,获得10
3分钟前
3分钟前
机智秋莲完成签到,获得积分20
3分钟前
欣欣子完成签到 ,获得积分10
3分钟前
apt完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
董可以发布了新的文献求助10
5分钟前
Orange应助董可以采纳,获得10
5分钟前
飞翔的企鹅完成签到,获得积分10
5分钟前
5分钟前
董可以发布了新的文献求助10
5分钟前
LYZSh发布了新的文献求助10
6分钟前
彭于晏应助董可以采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
LYZSh完成签到,获得积分10
6分钟前
鳗鱼飞松完成签到 ,获得积分20
6分钟前
widesky777完成签到 ,获得积分0
6分钟前
霜二完成签到 ,获得积分10
6分钟前
xiaofeixia完成签到 ,获得积分10
7分钟前
ys完成签到 ,获得积分10
7分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990543
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256532
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234