A machine learning framework for risk prediction of multi-label cardiovascular events based on focused carotid plaque B-Mode ultrasound: A Canadian study

医学 人口统计学的 超声波 人工智能 曲线下面积 冠状动脉疾病 内科学 机器学习 心脏病学 放射科 计算机科学 社会学 人口学
作者
Ankush D. Jamthikar,Deep Gupta,Amer M. Johri,Laura E. Mantella,Luca Saba,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:140: 105102-105102 被引量:28
标识
DOI:10.1016/j.compbiomed.2021.105102
摘要

Machine learning (ML) algorithms can provide better cardiovascular event (CVE) prediction. However, ML algorithms are mostly explored for predicting a single CVE at a time. The objective of this study is to design and develop an ML-based system to predict multi-label CVEs, such as (i) coronary artery disease, (ii) acute coronary syndrome, and (iii) a composite CVE-a class of AtheroEdge 3.0 (ML) system.Focused carotid B-mode ultrasound and coronary angiography are performed on a group of 459 participants consisting of three cardiovascular labels. Initially, 23 risk predictors comprising (i) patients' demographics, (ii) clinical blood-biomarkers, and (iii) carotid ultrasound image-based phenotypes are collected. Six types of classification techniques comprising (a) four problem transformation methods (PTM) and (b) two algorithm adaptation methods (AAM) are used for multi-label CVE prediction. The performance of the proposed system is evaluated for accuracy, sensitivity, specificity, F1-score, and area-under-the-curve (AUC) using 10-fold cross-validation. The proposed system is also verified using another database of 522 participants.For the primary database, PTM demonstrated a better multi-label CVE prediction than AAM (mean accuracy: 80.89% vs. 62.83%, mean AUC: 0.89 vs. 0.63), validating our hypothesis. The PTM-based binary relevance (BR) technique provided optimal performance in multi-label CVE prediction. The overall multi-label classification accuracy, sensitivity, specificity, F1-score, and AUC using BR are 81.2 ± 3.01%, 76.5 ± 8.8%, 83.8 ± 3.8%, 75.37 ± 5.8%, and 0.89 ± 0.02 (p < 0.0001), respectively. When used on the second Canadian database with seven cardiovascular events (acute coronary syndrome, myocardial infarction, angina, stroke, transient ischemic attack, heart failure, and death), the proposed system showed an accuracy of 96.36 ± 0.87% (AUC: 0.61 ± 0.06, p < 0.0001).ML-based multi-label classification algorithms, such as binary relevance, yielded the best predictions for three cardiovascular endpoints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助zz123采纳,获得10
刚刚
杜康完成签到,获得积分10
刚刚
Cheung2121发布了新的文献求助10
刚刚
医学小王完成签到 ,获得积分10
1秒前
3秒前
刘涵完成签到 ,获得积分10
4秒前
帅气的沧海完成签到 ,获得积分10
5秒前
辣辣辣辣辣辣完成签到 ,获得积分10
8秒前
9秒前
12秒前
乐观半兰完成签到,获得积分10
14秒前
14秒前
小丸子和zz完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
江雁完成签到,获得积分10
16秒前
坚定芯完成签到,获得积分10
16秒前
叶子兮完成签到,获得积分10
18秒前
幽默的妍完成签到 ,获得积分10
18秒前
Snow完成签到 ,获得积分10
18秒前
18秒前
liuyuh完成签到,获得积分10
19秒前
悠明夜月完成签到 ,获得积分10
20秒前
乌云乌云快走开完成签到,获得积分10
20秒前
你是我的唯一完成签到 ,获得积分10
20秒前
洁白的故人完成签到 ,获得积分10
22秒前
乐观半兰发布了新的文献求助10
22秒前
water应助科研通管家采纳,获得10
23秒前
zhang完成签到 ,获得积分10
23秒前
water应助科研通管家采纳,获得10
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得10
23秒前
23秒前
鲲鹏完成签到 ,获得积分10
24秒前
大气建辉完成签到 ,获得积分10
24秒前
尛森完成签到,获得积分10
24秒前
机灵枕头完成签到 ,获得积分10
25秒前
糖糖科研顺利呀完成签到 ,获得积分10
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022