A machine learning framework for risk prediction of multi-label cardiovascular events based on focused carotid plaque B-Mode ultrasound: A Canadian study

医学 人口统计学的 超声波 人工智能 曲线下面积 冠状动脉疾病 内科学 机器学习 心脏病学 放射科 计算机科学 社会学 人口学
作者
Ankush D. Jamthikar,Deep Gupta,Amer M. Johri,Laura E. Mantella,Luca Saba,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:140: 105102-105102 被引量:34
标识
DOI:10.1016/j.compbiomed.2021.105102
摘要

Machine learning (ML) algorithms can provide better cardiovascular event (CVE) prediction. However, ML algorithms are mostly explored for predicting a single CVE at a time. The objective of this study is to design and develop an ML-based system to predict multi-label CVEs, such as (i) coronary artery disease, (ii) acute coronary syndrome, and (iii) a composite CVE-a class of AtheroEdge 3.0 (ML) system.Focused carotid B-mode ultrasound and coronary angiography are performed on a group of 459 participants consisting of three cardiovascular labels. Initially, 23 risk predictors comprising (i) patients' demographics, (ii) clinical blood-biomarkers, and (iii) carotid ultrasound image-based phenotypes are collected. Six types of classification techniques comprising (a) four problem transformation methods (PTM) and (b) two algorithm adaptation methods (AAM) are used for multi-label CVE prediction. The performance of the proposed system is evaluated for accuracy, sensitivity, specificity, F1-score, and area-under-the-curve (AUC) using 10-fold cross-validation. The proposed system is also verified using another database of 522 participants.For the primary database, PTM demonstrated a better multi-label CVE prediction than AAM (mean accuracy: 80.89% vs. 62.83%, mean AUC: 0.89 vs. 0.63), validating our hypothesis. The PTM-based binary relevance (BR) technique provided optimal performance in multi-label CVE prediction. The overall multi-label classification accuracy, sensitivity, specificity, F1-score, and AUC using BR are 81.2 ± 3.01%, 76.5 ± 8.8%, 83.8 ± 3.8%, 75.37 ± 5.8%, and 0.89 ± 0.02 (p < 0.0001), respectively. When used on the second Canadian database with seven cardiovascular events (acute coronary syndrome, myocardial infarction, angina, stroke, transient ischemic attack, heart failure, and death), the proposed system showed an accuracy of 96.36 ± 0.87% (AUC: 0.61 ± 0.06, p < 0.0001).ML-based multi-label classification algorithms, such as binary relevance, yielded the best predictions for three cardiovascular endpoints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助韩梅采纳,获得10
刚刚
脑洞疼应助栖木采纳,获得10
2秒前
2秒前
dddd完成签到,获得积分10
2秒前
3秒前
3秒前
chennx完成签到,获得积分10
4秒前
哈密瓜发布了新的文献求助10
5秒前
5秒前
浮游应助zou采纳,获得10
5秒前
5秒前
5秒前
阳佟水蓉完成签到,获得积分10
6秒前
克林发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
浮游应助说话请投币采纳,获得10
7秒前
7秒前
过儿完成签到,获得积分10
7秒前
8秒前
能干的荆完成签到 ,获得积分10
8秒前
拼搏的寒凝完成签到 ,获得积分10
8秒前
桐桐应助zhouzhou采纳,获得10
9秒前
啦啦啦完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
XHT发布了新的文献求助10
10秒前
香蕉觅云应助大大大骁采纳,获得10
10秒前
所所应助心行采纳,获得10
10秒前
11秒前
白小白完成签到,获得积分10
11秒前
过儿发布了新的文献求助10
11秒前
11秒前
毅诚菌发布了新的文献求助10
11秒前
毅诚菌发布了新的文献求助10
11秒前
11秒前
毅诚菌发布了新的文献求助10
12秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907