A machine learning framework for risk prediction of multi-label cardiovascular events based on focused carotid plaque B-Mode ultrasound: A Canadian study

医学 人口统计学的 超声波 人工智能 曲线下面积 冠状动脉疾病 内科学 机器学习 心脏病学 放射科 计算机科学 社会学 人口学
作者
Ankush D. Jamthikar,Deep Gupta,Amer M. Johri,Laura E. Mantella,Luca Saba,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:140: 105102-105102 被引量:28
标识
DOI:10.1016/j.compbiomed.2021.105102
摘要

Machine learning (ML) algorithms can provide better cardiovascular event (CVE) prediction. However, ML algorithms are mostly explored for predicting a single CVE at a time. The objective of this study is to design and develop an ML-based system to predict multi-label CVEs, such as (i) coronary artery disease, (ii) acute coronary syndrome, and (iii) a composite CVE-a class of AtheroEdge 3.0 (ML) system.Focused carotid B-mode ultrasound and coronary angiography are performed on a group of 459 participants consisting of three cardiovascular labels. Initially, 23 risk predictors comprising (i) patients' demographics, (ii) clinical blood-biomarkers, and (iii) carotid ultrasound image-based phenotypes are collected. Six types of classification techniques comprising (a) four problem transformation methods (PTM) and (b) two algorithm adaptation methods (AAM) are used for multi-label CVE prediction. The performance of the proposed system is evaluated for accuracy, sensitivity, specificity, F1-score, and area-under-the-curve (AUC) using 10-fold cross-validation. The proposed system is also verified using another database of 522 participants.For the primary database, PTM demonstrated a better multi-label CVE prediction than AAM (mean accuracy: 80.89% vs. 62.83%, mean AUC: 0.89 vs. 0.63), validating our hypothesis. The PTM-based binary relevance (BR) technique provided optimal performance in multi-label CVE prediction. The overall multi-label classification accuracy, sensitivity, specificity, F1-score, and AUC using BR are 81.2 ± 3.01%, 76.5 ± 8.8%, 83.8 ± 3.8%, 75.37 ± 5.8%, and 0.89 ± 0.02 (p < 0.0001), respectively. When used on the second Canadian database with seven cardiovascular events (acute coronary syndrome, myocardial infarction, angina, stroke, transient ischemic attack, heart failure, and death), the proposed system showed an accuracy of 96.36 ± 0.87% (AUC: 0.61 ± 0.06, p < 0.0001).ML-based multi-label classification algorithms, such as binary relevance, yielded the best predictions for three cardiovascular endpoints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果完成签到,获得积分10
1秒前
万能图书馆应助好滴捏采纳,获得10
1秒前
1秒前
1秒前
科目三应助拼搏一曲采纳,获得10
1秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
852应助lemonkane采纳,获得20
4秒前
思源应助linn采纳,获得10
5秒前
lilila666发布了新的文献求助10
5秒前
8秒前
张钦奎发布了新的文献求助10
8秒前
Jem完成签到,获得积分10
8秒前
悦悦应助天真的冬瓜采纳,获得10
9秒前
猪猪侠完成签到,获得积分10
11秒前
12秒前
zyj完成签到,获得积分10
13秒前
13秒前
啦啦啦发布了新的文献求助10
14秒前
15秒前
15秒前
天真的冬瓜完成签到,获得积分10
16秒前
18秒前
19秒前
啦啦啦完成签到,获得积分10
19秒前
CodeCraft应助一方通行采纳,获得10
19秒前
Stardust发布了新的文献求助10
19秒前
传奇3应助summer采纳,获得30
20秒前
机灵的忆梅完成签到 ,获得积分10
21秒前
上官若男应助科研2121采纳,获得10
22秒前
寒冰寒冰完成签到,获得积分10
23秒前
张怡博发布了新的文献求助10
23秒前
我是老大应助Nature_Science采纳,获得10
25秒前
25秒前
26秒前
ABS完成签到,获得积分10
26秒前
28秒前
ABS发布了新的文献求助10
29秒前
霸气安筠发布了新的文献求助30
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173