A machine learning framework for risk prediction of multi-label cardiovascular events based on focused carotid plaque B-Mode ultrasound: A Canadian study

医学 人口统计学的 超声波 人工智能 曲线下面积 冠状动脉疾病 内科学 机器学习 心脏病学 放射科 计算机科学 社会学 人口学
作者
Ankush D. Jamthikar,Deep Gupta,Amer M. Johri,Laura E. Mantella,Luca Saba,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:140: 105102-105102 被引量:25
标识
DOI:10.1016/j.compbiomed.2021.105102
摘要

Machine learning (ML) algorithms can provide better cardiovascular event (CVE) prediction. However, ML algorithms are mostly explored for predicting a single CVE at a time. The objective of this study is to design and develop an ML-based system to predict multi-label CVEs, such as (i) coronary artery disease, (ii) acute coronary syndrome, and (iii) a composite CVE-a class of AtheroEdge 3.0 (ML) system.Focused carotid B-mode ultrasound and coronary angiography are performed on a group of 459 participants consisting of three cardiovascular labels. Initially, 23 risk predictors comprising (i) patients' demographics, (ii) clinical blood-biomarkers, and (iii) carotid ultrasound image-based phenotypes are collected. Six types of classification techniques comprising (a) four problem transformation methods (PTM) and (b) two algorithm adaptation methods (AAM) are used for multi-label CVE prediction. The performance of the proposed system is evaluated for accuracy, sensitivity, specificity, F1-score, and area-under-the-curve (AUC) using 10-fold cross-validation. The proposed system is also verified using another database of 522 participants.For the primary database, PTM demonstrated a better multi-label CVE prediction than AAM (mean accuracy: 80.89% vs. 62.83%, mean AUC: 0.89 vs. 0.63), validating our hypothesis. The PTM-based binary relevance (BR) technique provided optimal performance in multi-label CVE prediction. The overall multi-label classification accuracy, sensitivity, specificity, F1-score, and AUC using BR are 81.2 ± 3.01%, 76.5 ± 8.8%, 83.8 ± 3.8%, 75.37 ± 5.8%, and 0.89 ± 0.02 (p < 0.0001), respectively. When used on the second Canadian database with seven cardiovascular events (acute coronary syndrome, myocardial infarction, angina, stroke, transient ischemic attack, heart failure, and death), the proposed system showed an accuracy of 96.36 ± 0.87% (AUC: 0.61 ± 0.06, p < 0.0001).ML-based multi-label classification algorithms, such as binary relevance, yielded the best predictions for three cardiovascular endpoints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lululu完成签到,获得积分10
刚刚
1秒前
Johnny完成签到,获得积分10
1秒前
双丁宝贝应助12121采纳,获得10
1秒前
学徒发布了新的文献求助10
2秒前
zhang发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
luwei发布了新的文献求助10
6秒前
7秒前
wali完成签到 ,获得积分0
9秒前
祈愿完成签到,获得积分10
9秒前
氘代乙腈是不贵的呀完成签到,获得积分10
10秒前
小罗咩咩发布了新的文献求助10
10秒前
等待的盼波完成签到,获得积分10
10秒前
wminghui惠完成签到 ,获得积分10
10秒前
酷酷薯片发布了新的文献求助10
11秒前
12秒前
椰椰发布了新的文献求助10
12秒前
博定尚关注了科研通微信公众号
12秒前
12秒前
搜集达人应助Emma采纳,获得10
13秒前
14秒前
Hello应助zai采纳,获得10
15秒前
Sui完成签到,获得积分10
15秒前
16秒前
Singularity应助Ma采纳,获得10
17秒前
祈愿发布了新的文献求助150
19秒前
跨进行发布了新的文献求助10
19秒前
20秒前
飞云发布了新的文献求助10
20秒前
昔莳完成签到,获得积分10
21秒前
21秒前
执念发布了新的文献求助10
22秒前
星辰大海应助cjy123采纳,获得10
22秒前
CipherSage应助zhang采纳,获得10
22秒前
缥缈的厉完成签到 ,获得积分10
23秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309982
求助须知:如何正确求助?哪些是违规求助? 2943089
关于积分的说明 8512665
捐赠科研通 2618199
什么是DOI,文献DOI怎么找? 1430922
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490