磷化物
电解质
材料科学
钾
电化学
电池(电)
化学工程
无机化学
钾离子电池
磷酸盐
电极
金属
化学
有机化学
冶金
磷酸钒锂电池
功率(物理)
物理化学
工程类
物理
量子力学
作者
Shunping Ji,Jielei Li,Junfeng Li,Chunyan Song,Shuo Wang,Kexuan Wang,Kwan San Hui,Chenyang Zha,Yunshan Zheng,Duc Anh Dinh,Shi Chen,Jintao Zhang,Wenjie Mai,Zikang Tang,Zongping Shao,Kwun Nam Hui
标识
DOI:10.1002/adfm.202200771
摘要
Abstract Potassium‐ion batteries (PIBs) are a favorable alternative to lithium‐ion batteries (LIBs) for the large‐scale electrochemical storage devices because of the high natural abundance of potassium resources. However, conventional PIB electrodes usually exhibit low actual capacities and poor cyclic stability due to the large radius of potassium ions (1.39 Å). In addition, the high reactivity of potassium metal raises serious safety concerns. These characteristics seriously inhibit the practical use of PIB electrodes. Here, zinc phosphide composites are rationally designed as PIB anodes for operation in a nonflammable triethyl phosphate (TEP) electrolyte to solve the above‐mentioned issues. The optimized zinc phosphide composite with 20 wt% zinc phosphate presents a high specific capacity (571.1 mA h g −1 at 0.1 A g −1 ) and excellent cycling performance (484.9 mA h g −1 with the capacity retention of 94.5% after 1000 cycles at 0.5 A g −1 ) in the KFSI‐TEP electrolyte. XPS depth profile analysis shows that the improved cycling stability of the composite is closely related to the reversible dynamic evolutions and conversions of the sulfur‐containing species in the solid electrolyte interphase (SEI) during the charge/discharge process. This dynamic reversible SEI concept may provide a new strategy for the design of superior electrodes for PIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI