亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Gesture Recognition Strategy Based on A-Mode Ultrasound for Identifying Known and Unknown Gestures

手势 支持向量机 手势识别 计算机科学 朴素贝叶斯分类器 人工智能 可穿戴计算机 线性判别分析 规范化(社会学) 语音识别 特征提取 模式识别(心理学) 计算机视觉 嵌入式系统 社会学 人类学
作者
Lin Guo,Zongxing Lu,Ligang Yao,Shaoxiong Cai
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (11): 10730-10739 被引量:24
标识
DOI:10.1109/jsen.2022.3167696
摘要

Human-machine interface(HMI) technology has gradually become a research hotspot with the continuous development of computer technology and Internet of Things (IOT) technology. Hand gesture recognition (HGR) as an important part of HMI technology has been widely concerned. Among the many technical routes of HGR technology, the wearable HGR technology based on A-mode ultrasound shows great application potential due to its advantages such as lightweight device, free from sensors' constraint etc. However, in the process of processing A-mode ultrasonic signal, the amplitude of the signal at the main position may vary due to muscle fatigue and strength etc. when the same gesture is repeated some time later. In this paper, we design a method to overcome this problem and accomplish HGR in offline state by setting the threshold and use normalization method for the energy feature of ultrasonic signal according to the threshold. Three machine learning algorithms, including support vector machine (SVM), linear discriminant analysis (LDA) and Naive Bayes (NB) were used to verify the feasibility of this method, and the average recognition accuracy in the experiment reached 95.26%. Signal stability is also verified to be improved. In addition, We design a recognition strategy based on NB algorithm in this paper so that the model can identify the unknown gestures (i.e. gestures that have not been trained by the model). Five known gestures and five unknown gestures were set in the experiment, the average recognition accuracy of the known gestures is 91.2%, and the unknown gestures is 81.8%. This method can be used to optimize the user experience of HGR system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
missjucinda完成签到,获得积分10
3秒前
11秒前
Echo完成签到,获得积分10
12秒前
14秒前
Marciu33发布了新的文献求助10
19秒前
秋2完成签到 ,获得积分10
19秒前
25秒前
执念完成签到 ,获得积分10
30秒前
研友_VZG7GZ应助科研通管家采纳,获得10
38秒前
Lucas应助科研通管家采纳,获得10
38秒前
38秒前
丘比特应助奋斗若冰采纳,获得30
42秒前
45秒前
隐形曼青应助Xx采纳,获得10
47秒前
48秒前
Suzy应助ni采纳,获得10
49秒前
奋斗若冰发布了新的文献求助30
53秒前
可爱的函函应助GONGLI采纳,获得10
1分钟前
1分钟前
1分钟前
bluecat发布了新的文献求助10
1分钟前
星辰大海应助wzwer123采纳,获得10
1分钟前
乐乐应助bluecat采纳,获得10
1分钟前
喵喵完成签到 ,获得积分10
1分钟前
脑洞疼应助背后的思真采纳,获得10
1分钟前
眼睛大慕卉完成签到 ,获得积分10
1分钟前
整齐泥猴桃完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
林林完成签到 ,获得积分10
1分钟前
1分钟前
何琳发布了新的文献求助10
1分钟前
1分钟前
Menand完成签到,获得积分10
2分钟前
Xx发布了新的文献求助10
2分钟前
jokerhoney完成签到,获得积分10
2分钟前
背后的思真完成签到,获得积分10
2分钟前
bkagyin应助Xx采纳,获得10
2分钟前
dddd完成签到,获得积分10
2分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413289
求助须知:如何正确求助?哪些是违规求助? 3015642
关于积分的说明 8871542
捐赠科研通 2703375
什么是DOI,文献DOI怎么找? 1482215
科研通“疑难数据库(出版商)”最低求助积分说明 685159
邀请新用户注册赠送积分活动 679927