材料科学
石墨
沉积(地质)
粒径
粒子(生态学)
电极
分析化学(期刊)
等温过程
比表面积
化学工程
复合材料
化学
热力学
色谱法
工程类
物理化学
地质学
古生物学
物理
催化作用
海洋学
生物化学
生物
沉积物
作者
E. R. Logan,A. Eldesoky,Yulong Liu,Min Lei,Xinhe Yang,Helena Hebecker,Aidan Luscombe,Michel B. Johnson,J. R. Dahn
出处
期刊:Journal of The Electrochemical Society
[The Electrochemical Society]
日期:2022-04-27
卷期号:169 (5): 050524-050524
被引量:16
标识
DOI:10.1149/1945-7111/ac6aed
摘要
In an effort to better understand capacity loss mechanisms in LiFePO 4 (LFP)/graphite cells, this work considers carbon-coated LFP materials with different surface area and particle size. Cycling tests at room temperature (20 °C) and elevated temperatures show more severe capacity fade in cells with lower surface area LFP material. Measurements of Fe deposition on the negative electrode using micro X-ray fluorescence ( μ XRF) spectroscopy reveal more Fe on the graphite electrode from cells with low surface area. Measurements of parasitic heat flow using isothermal microcalorimetry show marginally higher parasitic heat flow in cells with low surface area. Cross-sectional SEM images of aged LFP electrodes show micro-fracture generation in large LFP particles, which are more prevalent in the low surface area material. Further, studies on the impact of vacuum drying procedures show that while Fe deposition can be inhibited by removing excess water contamination, the direct impact of Fe deposition on capacity fade is small. Despite the observed particle cracking, differential voltage analysis on aged cells suggested active material loss was not significant, leading to the conclusion that LFP particle fracture instead increases parasitic reaction rates leading to Li inventory loss.
科研通智能强力驱动
Strongly Powered by AbleSci AI