Pervasive Intronic Polyadenylation Serves as a Potential Source of Cancer Neoantigens

聚腺苷酸 RNA剪接 生物 计算生物学 核糖核酸 免疫原性 体细胞 癌症免疫疗法 癌症 核糖核蛋白 基因 遗传学 免疫疗法 抗原
作者
Xi Ren,Bin Zhang,Jia Li,Thamizhanban Manoharan,Beijia Liu,Yangyang Song,Shuye Tian,Kar-Tong Tan,Ling‐Wen Ding,Ying Li,Ömer An,Ming Li,Chan-Shuo Wu,Yang Liu,Boon Heng Dennis Teo,Sze Jing Tang,Jinhua Lu,Yuhui Hu,Wei Chen,Leilei Chen,Gloryn Chia,Henry Yang
出处
期刊:Research Square - Research Square 被引量:3
标识
DOI:10.21203/rs.3.rs-1537870/v1
摘要

Abstract Tumor-specific neoantigens have emerged as a promising source for cancer immunotherapy. These tumor-specific neoantigens could arise from somatic mutations, aberrant splicing and RNA editing. Since intronic polyadenylation has similar potential as mutations to generate tumor-specific transcripts and peptides, it may serve as another neoantigen source, which has not been explored. We developed a novel computational pipeline for identification of tumor-specific transcripts and their translated neoantigens derived from intronic polyadenylation. Applying it to RNA-seq data from 5,654 tumor samples of various cancers and 11,000 + normal samples of different tissues, we observed widespread tumor-specific intronic polyadenylated transcripts and their corresponding neoantigens. In addition, we also discovered complementary effects of neoantigens derived from different sources, identified neoantigens arising from recurrent intronic polyadenylated transcripts, and validated their immunogenicity. Here, we have demonstrated that we were able to identify and predict neoantigens from intronic polyadenylated transcripts using RNA sequencing data, hence, allowing us to explore such neoantigens as potential candidates for cancer immunotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助Ying采纳,获得10
刚刚
在水一方应助waa采纳,获得10
刚刚
1秒前
li发布了新的文献求助10
3秒前
牧紊完成签到 ,获得积分10
3秒前
李华发布了新的文献求助50
4秒前
长情的月光完成签到,获得积分10
5秒前
5秒前
6秒前
毛豆应助Mojee采纳,获得10
6秒前
6秒前
今后应助整齐新儿采纳,获得10
6秒前
6秒前
阳光下的味道完成签到,获得积分10
7秒前
Fascinate完成签到,获得积分10
8秒前
大模型应助清爽的向秋采纳,获得10
8秒前
8秒前
9秒前
清新发布了新的文献求助10
9秒前
李爱国应助大力沛萍采纳,获得10
10秒前
Irene完成签到,获得积分10
11秒前
SHINING发布了新的文献求助10
11秒前
JamesPei应助zhjp采纳,获得10
11秒前
傻芙芙的完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
可爱的函函应助刘艺珍采纳,获得10
14秒前
传奇3应助友好的向日葵采纳,获得10
15秒前
tylscxf完成签到,获得积分10
15秒前
SSScome发布了新的文献求助10
16秒前
怕孤单的sky应助粱自中采纳,获得10
16秒前
不安青牛应助hzw采纳,获得10
16秒前
烂萝卜发布了新的文献求助10
17秒前
17秒前
18秒前
科研通AI2S应助洛洛采纳,获得10
18秒前
18秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663