Effects of SiNx refractive index and SiO2 thickness on polarization‐type potential‐induced degradation in front‐emitter n‐type crystalline‐silicon photovoltaic cell modules
Abstract This study investigated how the SiN x refractive index (RI) and SiO 2 thickness, d ox , of stacked SiN x /SiO 2 passivation layers of the front p + emitters of n‐type crystalline‐silicon (c‐Si) photovoltaic (PV) cells affect their polarization‐type potential‐induced degradation (PID) behaviors. We prepared six n‐type c‐Si PV cells with an RI of 2.0 or 2.2 and with d ox of 9, 2, or 1 nm. Then PV modules fabricated from the cells were subjected to PID tests during which a bias of −1000 V was applied to cells with respect to the front cover glass surface. For d ox of 9 or 2 nm, rapid polarization‐type PID was observed, irrespective of the RI. However, for d ox of 1 nm, the RI markedly affected the degradation behavior, and cells with an RI of 2.2 showed no degradation. These findings are attributable to carrier transport between the high RI (Si‐rich) SiN x and the c‐Si substrates, which can readily occur only when the SiO 2 layer is sufficiently thin for electrons to tunnel through the SiO 2 layer. These results are important for elucidating polarization‐type PID mechanisms and for developing preventive measures against polarization‐type PID.