Development of Deep Convolutional Neural Network for Structural Topology Optimization

计算机科学 卷积神经网络 计算 拓扑(电路) 替代模型 人工神经网络 有限元法 网络拓扑 人工智能 拓扑优化 数学优化 算法 数学 机器学习 工程类 结构工程 组合数学 操作系统
作者
Junhyeon Seo,Rakesh K. Kapania
标识
DOI:10.2514/6.2022-2351
摘要

The paper presents a method to develop an accurate surrogate model, a deep-learning-based convolutional neural network (CNN) to optimize various types of structures in 2D and 3D using topology optimization. In general, structural topology optimization requires plenty of computations because of a large number of required finite element analyses (FEAs) to obtain optimal structural layouts to reduce the weight. Machine learning has been applied in many previous studies to increase computational efficiency. Researchers have proposed various methods to develop a surrogate model with a neural network to predict the material density configuration using the static analysis results obtained for the initial geometry without performing many iterative FEAs. In this research, we propose the use of a new framework that can improve the data utilization efficiency for training and predicting the optimal densities for the topological optimization of structures. To evaluate the proposed method, three case studies were conducted on the following: a 2D cantilever plate with a point load, a 2D simply-supported plate with a distributed load, and a 3D stiffened panel with a distributed load. In all cases, the developed surrogate models can predict the optimum structures with equivalent structural performance levels as those derived through conventional topology optimization. Also, when the optimal structures were derived using the proposed method, the total calculation time was reduced by 98% as compared to conventional topology optimization, once the CNN has been trained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VC0206发布了新的文献求助10
2秒前
谷谷完成签到,获得积分10
2秒前
win发布了新的文献求助10
2秒前
3秒前
SEAL完成签到 ,获得积分10
3秒前
点金石发布了新的文献求助10
4秒前
ken完成签到,获得积分10
4秒前
4秒前
4秒前
章鱼小丸子完成签到 ,获得积分10
5秒前
502发布了新的文献求助10
8秒前
8秒前
LgalaxyW完成签到,获得积分10
8秒前
8秒前
9秒前
小畅发布了新的文献求助10
9秒前
10秒前
深情安青应助碳土不凡采纳,获得10
11秒前
情怀应助陈昇采纳,获得10
11秒前
oi发布了新的文献求助10
11秒前
12秒前
cuidada发布了新的文献求助10
12秒前
小白发布了新的文献求助10
13秒前
嘎嘎完成签到 ,获得积分10
13秒前
那咋了完成签到,获得积分10
13秒前
丘比特应助半夏采纳,获得10
14秒前
小丸子博士完成签到 ,获得积分10
14秒前
15秒前
15秒前
黄景阳完成签到 ,获得积分10
18秒前
传奇3应助oi采纳,获得10
19秒前
呆呆完成签到,获得积分10
19秒前
CipherSage应助blackbody采纳,获得10
19秒前
Owen应助点金石采纳,获得10
19秒前
20秒前
21秒前
李健应助莫愁采纳,获得10
21秒前
Lucas应助周某某采纳,获得10
22秒前
陈昇给陈昇的求助进行了留言
22秒前
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5121136
求助须知:如何正确求助?哪些是违规求助? 4326371
关于积分的说明 13479415
捐赠科研通 4160135
什么是DOI,文献DOI怎么找? 2279852
邀请新用户注册赠送积分活动 1281637
关于科研通互助平台的介绍 1220557