Development of Deep Convolutional Neural Network for Structural Topology Optimization

计算机科学 卷积神经网络 计算 拓扑(电路) 替代模型 人工神经网络 有限元法 网络拓扑 人工智能 拓扑优化 数学优化 算法 数学 机器学习 工程类 结构工程 组合数学 操作系统
作者
Junhyeon Seo,Rakesh K. Kapania
标识
DOI:10.2514/6.2022-2351
摘要

The paper presents a method to develop an accurate surrogate model, a deep-learning-based convolutional neural network (CNN) to optimize various types of structures in 2D and 3D using topology optimization. In general, structural topology optimization requires plenty of computations because of a large number of required finite element analyses (FEAs) to obtain optimal structural layouts to reduce the weight. Machine learning has been applied in many previous studies to increase computational efficiency. Researchers have proposed various methods to develop a surrogate model with a neural network to predict the material density configuration using the static analysis results obtained for the initial geometry without performing many iterative FEAs. In this research, we propose the use of a new framework that can improve the data utilization efficiency for training and predicting the optimal densities for the topological optimization of structures. To evaluate the proposed method, three case studies were conducted on the following: a 2D cantilever plate with a point load, a 2D simply-supported plate with a distributed load, and a 3D stiffened panel with a distributed load. In all cases, the developed surrogate models can predict the optimum structures with equivalent structural performance levels as those derived through conventional topology optimization. Also, when the optimal structures were derived using the proposed method, the total calculation time was reduced by 98% as compared to conventional topology optimization, once the CNN has been trained.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助lx1199采纳,获得10
刚刚
1秒前
1秒前
一er完成签到,获得积分10
1秒前
Gzdaigzn完成签到,获得积分10
1秒前
CodeCraft应助拼搏的飞薇采纳,获得10
2秒前
杨嘉璐完成签到,获得积分10
2秒前
开放的寒梅完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
aa发布了新的文献求助30
7秒前
852应助CCTV采纳,获得10
8秒前
小二郎应助圣斗士采纳,获得10
8秒前
21完成签到 ,获得积分10
9秒前
10秒前
八九发布了新的文献求助10
10秒前
CipherSage应助aa采纳,获得30
11秒前
浮游应助Liz111采纳,获得10
12秒前
新羽完成签到,获得积分10
12秒前
FashionBoy应助铁瓜李采纳,获得10
12秒前
畅快自行车完成签到,获得积分10
12秒前
小破网完成签到 ,获得积分0
12秒前
13秒前
SciGPT应助在南方看北方采纳,获得10
13秒前
王丹靖完成签到 ,获得积分10
14秒前
15秒前
无私安白发布了新的文献求助10
15秒前
16秒前
努力哥完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助100
19秒前
可爱的函函应助SKF采纳,获得20
20秒前
20秒前
20秒前
21秒前
Xxuan完成签到,获得积分10
21秒前
21秒前
东方三问完成签到,获得积分10
21秒前
grassroot发布了新的文献求助10
22秒前
禾禾完成签到,获得积分10
22秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586279
求助须知:如何正确求助?哪些是违规求助? 4669574
关于积分的说明 14778915
捐赠科研通 4619294
什么是DOI,文献DOI怎么找? 2530818
邀请新用户注册赠送积分活动 1499652
关于科研通互助平台的介绍 1467830