Development of Deep Convolutional Neural Network for Structural Topology Optimization

计算机科学 卷积神经网络 计算 拓扑(电路) 替代模型 人工神经网络 有限元法 网络拓扑 人工智能 拓扑优化 数学优化 算法 数学 机器学习 工程类 结构工程 组合数学 操作系统
作者
Junhyeon Seo,Rakesh K. Kapania
标识
DOI:10.2514/6.2022-2351
摘要

The paper presents a method to develop an accurate surrogate model, a deep-learning-based convolutional neural network (CNN) to optimize various types of structures in 2D and 3D using topology optimization. In general, structural topology optimization requires plenty of computations because of a large number of required finite element analyses (FEAs) to obtain optimal structural layouts to reduce the weight. Machine learning has been applied in many previous studies to increase computational efficiency. Researchers have proposed various methods to develop a surrogate model with a neural network to predict the material density configuration using the static analysis results obtained for the initial geometry without performing many iterative FEAs. In this research, we propose the use of a new framework that can improve the data utilization efficiency for training and predicting the optimal densities for the topological optimization of structures. To evaluate the proposed method, three case studies were conducted on the following: a 2D cantilever plate with a point load, a 2D simply-supported plate with a distributed load, and a 3D stiffened panel with a distributed load. In all cases, the developed surrogate models can predict the optimum structures with equivalent structural performance levels as those derived through conventional topology optimization. Also, when the optimal structures were derived using the proposed method, the total calculation time was reduced by 98% as compared to conventional topology optimization, once the CNN has been trained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rondab应助deniroming采纳,获得10
1秒前
1秒前
牛奶牛奶完成签到,获得积分10
1秒前
2秒前
3秒前
铁路桥完成签到,获得积分10
3秒前
Akim应助半生瓜采纳,获得10
4秒前
呆鹅喵喵完成签到,获得积分10
4秒前
腼腆的洪纲完成签到,获得积分10
4秒前
芳芳完成签到,获得积分10
4秒前
mumu关注了科研通微信公众号
5秒前
铭轩发布了新的文献求助10
5秒前
野原新之助完成签到 ,获得积分10
5秒前
lyh2234发布了新的文献求助10
6秒前
FOLY发布了新的文献求助10
7秒前
刺猬完成签到,获得积分10
7秒前
wisdom应助超帅蓝血采纳,获得10
7秒前
曾建完成签到 ,获得积分10
8秒前
万能图书馆应助贝贝采纳,获得10
8秒前
8秒前
zyy211发布了新的文献求助30
9秒前
伊伊完成签到,获得积分10
10秒前
靓丽的战斗机完成签到,获得积分10
10秒前
10秒前
misstwo完成签到,获得积分10
10秒前
wxd完成签到,获得积分10
10秒前
11秒前
11秒前
慕青应助猫一猫采纳,获得10
11秒前
科研杂役发布了新的文献求助10
11秒前
shiji完成签到,获得积分10
12秒前
12秒前
Lxx完成签到,获得积分10
13秒前
无花果应助烂漫猫咪采纳,获得10
13秒前
shrike完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
吴彦鸿完成签到,获得积分10
13秒前
浩然完成签到,获得积分10
14秒前
半生瓜发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960377
求助须知:如何正确求助?哪些是违规求助? 3506460
关于积分的说明 11130713
捐赠科研通 3238673
什么是DOI,文献DOI怎么找? 1789847
邀请新用户注册赠送积分活动 871964
科研通“疑难数据库(出版商)”最低求助积分说明 803099