Pathologic liver tumor detection using feature aligned multi-scale convolutional network

计算机科学 卷积神经网络 串联(数学) 人工智能 特征(语言学) 增采样 模式识别(心理学) 卷积(计算机科学) 特征提取 图像(数学) 人工神经网络 数学 语言学 组合数学 哲学
作者
Tsung‐Lung Yang,Hung‐Wen Tsai,Wei-Che Huang,Jung-Chia Lin,Jia-Bin Liao,Nan‐Haw Chow,Pau‐Choo Chung
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:125: 102244-102244 被引量:10
标识
DOI:10.1016/j.artmed.2022.102244
摘要

The detection of the most common type of liver tumor, that is, hepatocellular carcinoma (HCC), is one essential step to liver pathology image analysis. In liver tissue, common cell change phenomena such as apoptosis, necrosis, and steatosis are similar in tumor and benign tissue. Hence, the detection of HCC may fail when the patches covered only limited tissue region without enough neighboring cell structure information. To address this problem, a Feature Aligned Multi-Scale Convolutional Network (FA-MSCN) architecture is proposed in this paper for automatic liver tumor detection based on whole slide images (WSI). The proposed network integrates the features obtained at different magnification levels to improve the detection performance by referencing more neighboring information. The FA-MSCN consists of two parallel convolutional networks in which one would extract high-resolution features and the other would extract low-resolution features by atrous convolution. The low-resolution features then go through central cropping, upsampling, and concatenation with high-resolution features for final classification. The experimental results demonstrated that Multi-Scale Convolutional Network (MSCN) improves the detection performance compared to Single-Scale Convolutional Network (SSCN), and that the FA-MSCN is superior to both SSCN and MSCN, demonstrating on HCC detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
婉君发布了新的文献求助10
刚刚
1秒前
田様应助木子雨路采纳,获得10
1秒前
任淮南发布了新的文献求助10
1秒前
今后应助Lizhe采纳,获得10
2秒前
luluyu完成签到,获得积分10
3秒前
是小程啊完成签到 ,获得积分20
4秒前
4秒前
雨儿发布了新的文献求助10
4秒前
Barry发布了新的文献求助50
6秒前
含糊发布了新的文献求助10
6秒前
爆米花应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得30
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
mhl11应助科研通管家采纳,获得10
7秒前
幕帆应助科研通管家采纳,获得10
7秒前
爱学习的小王完成签到,获得积分10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
dophin应助科研通管家采纳,获得10
8秒前
8秒前
e任思完成签到 ,获得积分10
8秒前
???完成签到,获得积分10
9秒前
llllllll完成签到,获得积分10
9秒前
9秒前
星辰大海应助zasideler采纳,获得10
11秒前
11秒前
Never stall发布了新的文献求助10
11秒前
tqw完成签到,获得积分10
11秒前
SciGPT应助Cynthia采纳,获得10
11秒前
11秒前
是赤赤呀完成签到,获得积分10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307880
求助须知:如何正确求助?哪些是违规求助? 2941451
关于积分的说明 8503412
捐赠科研通 2615951
什么是DOI,文献DOI怎么找? 1429290
科研通“疑难数据库(出版商)”最低求助积分说明 663712
邀请新用户注册赠送积分活动 648671