A cooperative coevolutionary algorithm approach to the no-wait job shop scheduling problem

计算机科学 作业车间调度 元启发式 数学优化 人口 水准点(测量) 调度(生产过程) 算法 数学 大地测量学 地铁列车时刻表 操作系统 社会学 人口学 地理
作者
Víctor M. Valenzuela-Alcaraz,María de los Ángeles Cosío-León,A. Danisa Romero-Ocaño,Carlos A. Brizuela
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:194: 116498-116498 被引量:14
标识
DOI:10.1016/j.eswa.2022.116498
摘要

The no-wait job shop is an extension of the well-known job shop scheduling subject to the constraint that the operations of any job, once started, must be processed immediately, one after the other, until the completion of the job. The problem is NP-hard and exact methods can only solve small instances. In the last two decades of advances on this problem, one aspect became central for the success of metaheuristics to tackle it, namely the decomposition of solution into two parts: sequencing and timetabling. Most of these metaheuristics use a permutation to represent the sequencing part, while the timetabling part uses specific rules that differentiate one approach from the other. The main contribution of this work is the proposal of a cooperative coevolutionary algorithm where the sequencing and the timetabling parts interact with each other to evolve quasi-optimal sequencing and timetabling decisions. To this aim, the algorithm co-evolves a population of permutations with a population of binary chains. The permutation decides the sequencing while each bit in the binary chain decides whether or not a job is shifted to the left-most position on its corresponding machine. Therefore, the whole binary chain defines a timetabling rule that is automatically optimized during the evolution process. The algorithm also includes one-step perturbation mechanisms that help improve the solution quality. The proposed algorithm is tested on a set of benchmark instances to compare it with seven state-of-the-art methods. Computational experiments show that the proposed algorithm produces competitive results, furthermore, new best values for four instances are obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8R3XdL完成签到 ,获得积分10
刚刚
2秒前
共享精神应助南卡采纳,获得10
3秒前
青柠完成签到,获得积分10
3秒前
傲娇的凡旋应助谢香辣采纳,获得10
3秒前
3秒前
5秒前
研友_841e4L完成签到,获得积分10
5秒前
嗯哼举报123456789求助涉嫌违规
5秒前
哭泣蛋挞完成签到 ,获得积分10
6秒前
7秒前
8秒前
王江兰发布了新的文献求助10
10秒前
朱一龙发布了新的文献求助10
12秒前
嗯哼举报宗桑求助涉嫌违规
13秒前
new完成签到 ,获得积分10
13秒前
大个应助Li采纳,获得10
14秒前
Yacon完成签到 ,获得积分10
14秒前
天天快乐应助科研糊涂神采纳,获得10
15秒前
无奈鸣凤应助小田心采纳,获得10
15秒前
深情安青应助郑堰爻采纳,获得10
16秒前
丽丸完成签到,获得积分10
17秒前
随便完成签到,获得积分10
18秒前
cheems发布了新的文献求助10
18秒前
John完成签到 ,获得积分10
19秒前
在水一方应助Zyankali采纳,获得10
20秒前
20秒前
21秒前
随便发布了新的文献求助10
22秒前
可乐应助科研通管家采纳,获得10
22秒前
yifanchen应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
xuyun发布了新的文献求助50
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
22秒前
jiunuan应助科研通管家采纳,获得10
22秒前
22秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339525
求助须知:如何正确求助?哪些是违规求助? 2967484
关于积分的说明 8630077
捐赠科研通 2647082
什么是DOI,文献DOI怎么找? 1449453
科研通“疑难数据库(出版商)”最低求助积分说明 671418
邀请新用户注册赠送积分活动 660304