计算机科学
分割
人工智能
点云
变压器
图像分割
计算机视觉
目标检测
点(几何)
模式识别(心理学)
工程类
数学
几何学
电气工程
电压
作者
Hengshuang Zhao,Jiang Li,Jiaya Jia,Philip H. S. Torr,Vladlen Koltun
标识
DOI:10.1109/iccv48922.2021.01595
摘要
Self-attention networks have revolutionized natural language processing and are making impressive strides in image analysis tasks such as image classification and object detection. Inspired by this success, we investigate the application of self-attention networks to 3D point cloud processing. We design self-attention layers for point clouds and use these to construct self-attention networks for tasks such as semantic scene segmentation, object part segmentation, and object classification. Our Point Transformer design improves upon prior work across domains and tasks. For example, on the challenging S3DIS dataset for large-scale semantic scene segmentation, the Point Transformer attains an mIoU of 70.4% on Area 5, outperforming the strongest prior model by 3.3 absolute percentage points and crossing the 70% mIoU threshold for the first time.
科研通智能强力驱动
Strongly Powered by AbleSci AI