Efficient Real-Time Train Operation Algorithms With Uncertain Passenger Demands

准时 不确定性算法 计算机科学 能源消耗 马尔可夫决策过程 过程(计算) 算法 工程类 实时计算 马尔可夫过程 运筹学 运输工程 统计 电气工程 数学 操作系统
作者
Jiateng Yin,Dewang Chen,Lixing Yang,Tao Tang,Bin Ran
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:17 (9): 2600-2612 被引量:36
标识
DOI:10.1109/tits.2015.2478403
摘要

The majority of existing studies in subway train operations focus on timetable optimization and vehicle tracking methods, which may be infeasible with disturbances in actual operations. To deal with uncertain passenger demands and realize real-time train operations (RTOs) satisfying multiobjectives, including overspeed protection, punctuality, riding comfort, and energy consumption, this paper proposes two RTO algorithms via expert knowledge and an online learning approach. The first RTO algorithm is developed by a knowledge-based system to ensure the multiple objectives with a constant timetable. Then, by considering uncertain passenger demand at each station and random running time errors, we convert the train operation problem into a Markov decision process with nondeterministic state transition probabilities in which the aim is to minimize the reward for both the total time delay and energy consumption in a subway line. After designing policy, reward, and transition probability, we develop an integrated train operation (ITO) algorithm based on Q-learning to realize RTOs with online adjusting the timetable. Finally, we present some numerical examples to test the proposed algorithms with real detected data in the Yizhuang Line of Beijing Subway. The results indicate that, taking the multiple objectives into account, the RTO algorithm outperforms both manual driving and automatic train operations. In addition, the ITO algorithm is capable of dealing with uncertain disturbances, keeping the total time delay within 2 s and reducing the energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
井野浮应助fzy采纳,获得30
1秒前
YF完成签到 ,获得积分10
3秒前
昊昊发布了新的文献求助10
3秒前
3秒前
研友_VZG7GZ应助球球采纳,获得10
4秒前
5秒前
JMZ14258完成签到,获得积分10
6秒前
6秒前
yao发布了新的文献求助30
6秒前
LL发布了新的文献求助10
8秒前
9秒前
10秒前
Rocc完成签到,获得积分10
10秒前
传奇3应助sally采纳,获得10
10秒前
爆米花应助圆圆采纳,获得10
10秒前
陶醉觅夏发布了新的文献求助10
11秒前
Jasper应助人间枝头采纳,获得10
11秒前
11秒前
cgsu完成签到,获得积分10
11秒前
刻苦的紫翠完成签到,获得积分10
12秒前
umi发布了新的文献求助10
12秒前
13秒前
14秒前
安详的凝雁完成签到,获得积分20
15秒前
Lucas应助陶醉觅夏采纳,获得10
16秒前
guyutian发布了新的文献求助30
17秒前
浮生发布了新的文献求助10
18秒前
xxw完成签到,获得积分10
18秒前
super发布了新的文献求助10
19秒前
杳鸢应助小爽采纳,获得20
20秒前
枸杞泡奶茶完成签到,获得积分10
20秒前
21秒前
Lucas应助mitty采纳,获得10
21秒前
21秒前
可靠盼旋发布了新的文献求助10
22秒前
你好纠结伦完成签到,获得积分10
22秒前
22秒前
学阀完成签到,获得积分10
24秒前
yang完成签到,获得积分10
25秒前
zgd发布了新的文献求助10
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229089
求助须知:如何正确求助?哪些是违规求助? 2876882
关于积分的说明 8196780
捐赠科研通 2544248
什么是DOI,文献DOI怎么找? 1374200
科研通“疑难数据库(出版商)”最低求助积分说明 646906
邀请新用户注册赠送积分活动 621693