Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis

卷积(计算机科学) 计算机科学 人工神经网络 支持向量机 人工智能 断层(地质) 模式识别(心理学) 数据挖掘 振动 方位(导航) 卷积神经网络 机器学习 地震学 地质学 物理 量子力学
作者
Xiaojie Guo,Liang Chen,Changqing Shen
出处
期刊:Measurement [Elsevier BV]
卷期号:93: 490-502 被引量:618
标识
DOI:10.1016/j.measurement.2016.07.054
摘要

Traditional artificial methods and intelligence-based methods of classifying and diagnosing various mechanical faults with high accuracy by extracting effective features from vibration data, such as support vector machines and back propagation neural networks, have been widely investigated. However, the problems of extracting features automatically without significantly increasing the demand for machinery expertise and maximizing accuracy without overcomplicating machine structure have to date remained unsolved. Therefore, a novel hierarchical learning rate adaptive deep convolution neural network based on an improved algorithm was proposed in this study, and its use to diagnose bearing faults and determine their severity was investigated. To test the effectiveness of the proposed method, an experiment was conducted with bearing-fault data samples obtained from a test rig. The method achieved a satisfactory performance in terms of both fault-pattern recognition and fault-size evaluation. In addition, comparison revealed that the improved algorithm is well suited to the fault-diagnosis model, and that the proposed method is superior to other existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaoyali发布了新的文献求助10
刚刚
1秒前
我不吃葱完成签到 ,获得积分10
2秒前
CodeCraft应助魔幻的斑马采纳,获得10
3秒前
科研白白完成签到 ,获得积分10
4秒前
5秒前
向阳花木关注了科研通微信公众号
5秒前
6秒前
7秒前
凉翊完成签到,获得积分10
9秒前
asdzzzas发布了新的文献求助10
11秒前
猪猪hero发布了新的文献求助10
11秒前
12秒前
猪猪hero发布了新的文献求助10
16秒前
17秒前
17秒前
asdzzzas完成签到,获得积分20
18秒前
Pannn完成签到,获得积分10
18秒前
18秒前
niuniujia由于求助违规,被管理员扣积分200
19秒前
kidult完成签到,获得积分10
20秒前
咸鱼已躺平完成签到,获得积分10
21秒前
炫潮浪子发布了新的文献求助30
21秒前
xae发布了新的文献求助10
21秒前
Jasper应助yiryir采纳,获得10
23秒前
23秒前
打打应助asdzzzas采纳,获得10
26秒前
毕不了业的凡阿哥完成签到,获得积分10
26秒前
26秒前
in关注了科研通微信公众号
27秒前
馆长应助晓生采纳,获得30
28秒前
脑洞疼应助GQ采纳,获得10
30秒前
今后应助是阿丹啊采纳,获得10
31秒前
彳亍完成签到,获得积分10
32秒前
科研通AI2S应助虫子采纳,获得10
35秒前
36秒前
37秒前
不安青牛应助null采纳,获得200
39秒前
yiryir发布了新的文献求助10
41秒前
生动忆梅完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537416
求助须知:如何正确求助?哪些是违规求助? 3972408
关于积分的说明 12305983
捐赠科研通 3639131
什么是DOI,文献DOI怎么找? 2003673
邀请新用户注册赠送积分活动 1039043
科研通“疑难数据库(出版商)”最低求助积分说明 928497