微震
工作流程
计算机科学
振幅
人工智能
波形
算法
数据挖掘
机器学习
地质学
地震学
数据库
电信
量子力学
物理
雷达
作者
Eduardo Valero Cano,Jubran Akram,Daniel Peter,Leo Eisner
标识
DOI:10.1190/segam2019-3215089.1
摘要
We propose a workflow for automatic P- and S-wave arrival picking on downhole microseismic data. It uses conditional fuzzy c-means clustering to identify time intervals of possible wave arrivals. We classify the signal intervals as P- and S-wave using the first and second eigenvalues of the waveforms contained within. The Akaike information criterion (AIC) picker is then applied to the identified P- and S-wave intervals for arrival picking. Using real microseismic dataset examples, we show that the proposed workflow yields accurate arrival picks for both high and low signal-to-noise ratio waveforms. The identification of signal intervals, however, uses features based on amplitude, thus remains susceptible to high amplitude noise. Presentation Date: Wednesday, September 18, 2019 Session Start Time: 1:50 PM Presentation Start Time: 3:30 PM Location: 217B Presentation Type: Oral
科研通智能强力驱动
Strongly Powered by AbleSci AI