离子电导率
电解质
介电谱
电导率
电化学
材料科学
扫描电子显微镜
快离子导体
无机化学
陶瓷
电化学窗口
化学
分离器(采油)
化学工程
复合材料
物理化学
电极
热力学
物理
工程类
作者
Zhijun Wu,Zhengkun Xie,Akihiro Yoshida,Xiaowei An,Zhongde Wang,Xiaogang Hao,Abuliti Abudula,Guoqing Guan
标识
DOI:10.1016/j.cej.2019.122419
摘要
Li2S-P2S5 (LPS) based glass-ceramic electrolytes doped with SeS2 are prepared by a facile high-energy ball milling combined annealing way. The structures, ionic conductivities and electrochemical stabilities of the 70Li2S·(30 − x)P2S5·xSeS2 (x = 0, 0.3, 0.5, 1, 3, 5) glass-ceramic electrolytes are investigated. By combining X-ray powder diffraction (XRD) analysis-refinement and first-principle calculations, it is confirmed that a little amount of SeS2 (x ≤ 1) can be successfully doped into the framework of LPS composite, and as such, the ionic conductivity can be greatly enhanced by the substitution of a part of P2S5 with SeS2. In particular, the 70Li2S·29P2S5·1SeS2 glass-ceramic exhibits the highest conductivity of 5.28 × 10−3 S·cm−1 at 20 °C with a low activation energy of 24.7 kJ·mol−1, and higher electrochemical stability than the original 70Li2S·30P2S5 glass-ceramic. Furthermore, all-solid-state battery assembled based on 70Li2S·29P2S5·1SeS2 electrolyte and sulfur-reduced graphene oxide (S-rGO) composite electrode shows excellent rate capability and cycling stability at low temperatures. Furthermore, electrochemical impedance spectroscopy (EIS) analyses and the cross-section observe by scanning electron microscope (SEM) of all-solid-state lithium-ion batteries reveal that addition of SeS2 into the Li2S-P2S5 electrolyte substrate can decrease the interfacial resistance between the electrodes and solid electrolyte and reduce the production of lithium dendrites. These results indicate that 70Li2S·29P2S5·1SeS2 electrolyte can be served as an effective solid electrolyte for the construction of high performance all-solid-state batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI