拉普拉斯算子
操作员(生物学)
非线性系统
数学
分数拉普拉斯
色散(光学)
核(代数)
反应扩散系统
班级(哲学)
数学分析
卷积(计算机科学)
统计物理学
应用数学
纯数学
物理
量子力学
化学
计算机科学
转录因子
基因
机器学习
人工智能
抑制因子
生物化学
人工神经网络
作者
Jimmy Garnier,François Hamel,Lionel Roques
摘要
We consider a general form of reaction-dispersion equations with non-local or nonlinear dispersal operators and local reaction terms. Under some general conditions, we prove the non-existence of transition fronts, as well as some stretching properties at large time for the solutions of the Cauchy problem. These conditions are satisfied in particular when the reaction is monostable and when the dispersal operator is either the fractional Laplacian, a convolution operator with a fat-tailed kernel or a nonlinear fast diffusion operator.
科研通智能强力驱动
Strongly Powered by AbleSci AI