Multi-Kernel Coupled Projections for Domain Adaptive Dictionary Learning

判别式 计算机科学 核(代数) 人工智能 模式识别(心理学) 稀疏逼近 水准点(测量) 多核学习 核方法 投影(关系代数) 领域(数学分析) 机器学习 子空间拓扑 代表(政治) 树核 径向基函数核 支持向量机 算法 数学 数学分析 组合数学 政治 政治学 法学 地理 大地测量学
作者
Yinqiang Zheng,Xilong Wang,Zhang Guo-qing,Baihua Xiao,Fu Xiao,Jianwei Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:21 (9): 2292-2304 被引量:24
标识
DOI:10.1109/tmm.2019.2900166
摘要

Dictionary learning has produced state-of-the-art results in various classification tasks. However, if the training data have a different distribution than the testing data, the learned sparse representation might not be optimal. Recently, several domain-adaptive dictionary learning (DADL) methods and kernels have been proposed and have achieved impressive performance. However, the performance of these single kernel-based methods heavily depends heavily on the choice of the kernel, and the question of how to combine multiple kernel learning (MKL) with the DADL framework has not been well studied. Motivated by these concerns, in this paper, we propose a multi-kernel domain-adaptive sparse representation-based classification (MK-DASRC) and then use it as a criterion to design a multi-kernel sparse representation-based domain-adaptive discriminative projection method, in which the discriminative features of the data in the two domains are simultaneously learned with the dictionary. The purpose of this method is to maximize the between-class sparse reconstruction residuals of data from both domains, and minimize the within-class sparse reconstruction residuals of data in the low-dimensional subspace. Thus, the resulting representations can satisfactorily fit MK-DASRC and simultaneously display discriminability. Extensive experimental results on a series of benchmark databases show that our method performs better than the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的小蕾完成签到,获得积分10
刚刚
1秒前
hera_jojo发布了新的文献求助10
1秒前
孙景泽完成签到,获得积分10
1秒前
1秒前
万能图书馆应助赵辉采纳,获得10
2秒前
323完成签到,获得积分10
3秒前
奋斗秋发布了新的文献求助10
4秒前
Jasper应助结实涑采纳,获得10
5秒前
5秒前
5秒前
万能图书馆应助guard采纳,获得10
6秒前
灵巧高山应助啊哈哈哈采纳,获得10
7秒前
10秒前
Lucas应助bianbianbian采纳,获得10
10秒前
guard发布了新的文献求助10
10秒前
sharks完成签到,获得积分10
11秒前
沉默的晓旋完成签到,获得积分10
13秒前
13秒前
wanci应助zzxgo采纳,获得10
14秒前
爱听歌契完成签到 ,获得积分10
14秒前
21完成签到,获得积分10
14秒前
SYLH应助Try_1采纳,获得10
14秒前
15秒前
希望天下0贩的0应助彳亍采纳,获得10
15秒前
zwtaihua1025发布了新的文献求助10
16秒前
晓南窗发布了新的文献求助10
16秒前
Chelsea完成签到,获得积分10
16秒前
17秒前
17秒前
小蘑菇应助gto1900采纳,获得50
17秒前
miko发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
平常的可乐完成签到 ,获得积分10
20秒前
20秒前
山城完成签到 ,获得积分10
21秒前
上官若男应助K513693050采纳,获得10
22秒前
莫妮卡发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555252
求助须知:如何正确求助?哪些是违规求助? 3130871
关于积分的说明 9389097
捐赠科研通 2830384
什么是DOI,文献DOI怎么找? 1555991
邀请新用户注册赠送积分活动 726370
科研通“疑难数据库(出版商)”最低求助积分说明 715737