分路器
纳米光子学
光子学
计算机科学
人工神经网络
反向
绝缘体上的硅
电子工程
拓扑(电路)
光电子学
人工智能
材料科学
电气工程
物理
硅
工程类
光学
数学
几何学
作者
Mohammad H. Tahersima,Keisuke Kojima,Toshiaki Koike–Akino,Devesh K. Jha,Bingnan Wang,Chung-Wei Lin,Kieran Parsons
标识
DOI:10.1038/s41598-018-37952-2
摘要
Abstract Predicting physical response of an artificially structured material is of particular interest for scientific and engineering applications. Here we use deep learning to predict optical response of artificially engineered nanophotonic devices. In addition to predicting forward approximation of transmission response for any given topology, this approach allows us to inversely approximate designs for a targeted optical response. Our Deep Neural Network (DNN) could design compact (2.6 × 2.6 μm 2 ) silicon-on-insulator (SOI)-based 1 × 2 power splitters with various target splitting ratios in a fraction of a second. This model is trained to minimize the reflection (to smaller than ~ −20 dB) while achieving maximum transmission efficiency above 90% and target splitting specifications. This approach paves the way for rapid design of integrated photonic components relying on complex nanostructures.
科研通智能强力驱动
Strongly Powered by AbleSci AI