石墨烯
材料科学
石墨
化学工程
介孔材料
锂(药物)
无定形固体
阳极
透射电子显微镜
电解质
纳米颗粒
纳米技术
复合材料
电极
结晶学
有机化学
化学
工程类
内分泌学
物理化学
催化作用
医学
作者
Jianbin Li,Wenjing Liu,Qi Wan,Fangming Liu,Xuan Li,Yingjun Qiao,Meizhen Qu,Gongchang Peng
标识
DOI:10.1002/ente.201900464
摘要
A dual‐shell structure Si@SiO x @graphite/graphene (SGGr) is prepared by large‐scale spray‐drying. In this composite, Si nanoparticles act as the core, SiO x and graphite/graphene serve as the shell. Transmission electron microscopy (TEM) studies show that Si nanoparticles are coated with a 1–2 nm SiO x layer and embedded into the sheets of graphite/graphene. Amorphous SiO x and graphite/graphene as the production layer can prevent Si directly connecting with the electrolyte and improve the entire structural stability. In addition, nitrogen adsorption–desorption measurements indicate that the prepared SGGr has a higher Brunauer–Emmett–Teller (BET) surface area (48.4 m 2 g −1 ) than pure Si (36.2 m 2 g −1 ) due to the existence of mesopores and macropores, which can shorten the lithium‐ion transport pathway and provide enough void space for accommodating the volume expansion. The prepared SGGr exhibits a high reversible specific capacity of 1089.3 mAh g −1 after 400 cycles (0.16% decay per cycle), indicating that SGGr has the great potential for industrial application for lithium‐ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI