A review of data-driven fault detection and diagnosis methods: applications in chemical process systems

计算机科学 过程(计算) 故障检测与隔离 机器学习 人工智能 数据挖掘 人工神经网络 主成分分析 线性判别分析 化学过程 模式识别(心理学) 工程类 化学工程 操作系统 执行机构
作者
Norazwan Md Nor,Che Rosmani Che Hassan,Musa Hussain
出处
期刊:Reviews in Chemical Engineering [De Gruyter]
卷期号:36 (4): 513-553 被引量:105
标识
DOI:10.1515/revce-2017-0069
摘要

Abstract Fault detection and diagnosis (FDD) systems are developed to characterize normal variations and detect abnormal changes in a process plant. It is always important for early detection and diagnosis, especially in chemical process systems to prevent process disruptions, shutdowns, or even process failures. However, there have been only limited reviews of data-driven FDD methods published in the literature. Therefore, the aim of this review is to provide the state-of-the-art reference for chemical engineers and to promote the application of data-driven FDD methods in chemical process systems. In general, there are two different groups of data-driven FDD methods: the multivariate statistical analysis and the machine learning approaches, which are widely accepted and applied in various industrial processes, including chemicals, pharmaceuticals, and polymers. Many different multivariate statistical analysis methods have been proposed in the literature, such as principal component analysis, partial least squares, independent component analysis, and Fisher discriminant analysis, while the machine learning approaches include artificial neural networks, neuro-fuzzy methods, support vector machine, Gaussian mixture model, K-nearest neighbor, and Bayesian network. In the first part, this review intends to provide a comprehensive literature review on applications of data-driven methods in FDD systems for chemical process systems. In addition, the hybrid FDD frameworks have also been reviewed by discussing the distinct advantages and various constraints, with some applications as examples. However, the choice for the data-driven FDD methods is not a straightforward issue. Thus, in the second part, this paper provides a guideline for selecting the best possible data-driven method for FDD systems based on their faults. Finally, future directions of data-driven FDD methods are summarized with the intent to expand the use for the process monitoring community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huyz完成签到,获得积分10
1秒前
Miya_han完成签到,获得积分10
1秒前
melody完成签到,获得积分10
1秒前
sos完成签到,获得积分10
2秒前
布布完成签到,获得积分10
2秒前
4秒前
hq完成签到,获得积分10
4秒前
澈千子完成签到,获得积分10
5秒前
xiaowanzi完成签到 ,获得积分10
5秒前
futianyu完成签到 ,获得积分0
6秒前
yang完成签到,获得积分10
6秒前
丫丫完成签到,获得积分10
7秒前
DijiaXu应助烂漫人达采纳,获得10
8秒前
8秒前
自行设置完成签到,获得积分10
8秒前
美丽凡阳完成签到,获得积分10
9秒前
铃旅完成签到,获得积分10
10秒前
zulpikar完成签到 ,获得积分10
11秒前
wsg完成签到,获得积分10
11秒前
WNL完成签到,获得积分10
11秒前
12秒前
蓝豆子完成签到 ,获得积分10
12秒前
文艺代灵完成签到,获得积分10
12秒前
大个应助humaning采纳,获得10
14秒前
欣喜的薯片完成签到 ,获得积分10
14秒前
007完成签到,获得积分10
14秒前
liguanyu1078完成签到,获得积分10
15秒前
weiyongswust发布了新的文献求助10
15秒前
海东来应助seattle采纳,获得50
15秒前
早起完成签到,获得积分10
16秒前
陈陈完成签到,获得积分10
16秒前
中岛悠斗完成签到,获得积分10
17秒前
淘宝叮咚发布了新的文献求助10
18秒前
要减肥灭绝完成签到,获得积分10
18秒前
007完成签到,获得积分10
18秒前
优雅友蕊完成签到,获得积分10
19秒前
端庄的蜡烛完成签到,获得积分10
19秒前
恐龙完成签到 ,获得积分10
19秒前
junzilan完成签到,获得积分10
20秒前
AN完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027