清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A review of data-driven fault detection and diagnosis methods: applications in chemical process systems

计算机科学 过程(计算) 故障检测与隔离 机器学习 人工智能 数据挖掘 人工神经网络 主成分分析 线性判别分析 化学过程 模式识别(心理学) 工程类 化学工程 操作系统 执行机构
作者
Norazwan Md Nor,Che Rosmani Che Hassan,Musa Hussain
出处
期刊:Reviews in Chemical Engineering [De Gruyter]
卷期号:36 (4): 513-553 被引量:105
标识
DOI:10.1515/revce-2017-0069
摘要

Abstract Fault detection and diagnosis (FDD) systems are developed to characterize normal variations and detect abnormal changes in a process plant. It is always important for early detection and diagnosis, especially in chemical process systems to prevent process disruptions, shutdowns, or even process failures. However, there have been only limited reviews of data-driven FDD methods published in the literature. Therefore, the aim of this review is to provide the state-of-the-art reference for chemical engineers and to promote the application of data-driven FDD methods in chemical process systems. In general, there are two different groups of data-driven FDD methods: the multivariate statistical analysis and the machine learning approaches, which are widely accepted and applied in various industrial processes, including chemicals, pharmaceuticals, and polymers. Many different multivariate statistical analysis methods have been proposed in the literature, such as principal component analysis, partial least squares, independent component analysis, and Fisher discriminant analysis, while the machine learning approaches include artificial neural networks, neuro-fuzzy methods, support vector machine, Gaussian mixture model, K-nearest neighbor, and Bayesian network. In the first part, this review intends to provide a comprehensive literature review on applications of data-driven methods in FDD systems for chemical process systems. In addition, the hybrid FDD frameworks have also been reviewed by discussing the distinct advantages and various constraints, with some applications as examples. However, the choice for the data-driven FDD methods is not a straightforward issue. Thus, in the second part, this paper provides a guideline for selecting the best possible data-driven method for FDD systems based on their faults. Finally, future directions of data-driven FDD methods are summarized with the intent to expand the use for the process monitoring community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yvonne发布了新的文献求助10
16秒前
传奇3应助Yvonne采纳,获得10
31秒前
Yvonne完成签到,获得积分10
36秒前
宁羽发布了新的文献求助10
44秒前
zct完成签到,获得积分10
1分钟前
zh完成签到,获得积分10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
1分钟前
尤里有气发布了新的文献求助10
1分钟前
1分钟前
叶千山完成签到 ,获得积分10
1分钟前
Yvonne发布了新的文献求助10
1分钟前
华仔应助Yvonne采纳,获得10
1分钟前
晨曦完成签到 ,获得积分10
1分钟前
kean1943完成签到,获得积分10
2分钟前
2分钟前
尤里有气发布了新的文献求助10
2分钟前
orixero应助宁羽采纳,获得10
2分钟前
2分钟前
宁羽1完成签到,获得积分10
2分钟前
活泼雪碧发布了新的文献求助10
2分钟前
2分钟前
宁羽完成签到,获得积分10
2分钟前
Yvonne发布了新的文献求助10
2分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
3分钟前
尤里有气发布了新的文献求助10
3分钟前
RC发布了新的文献求助10
3分钟前
tt完成签到,获得积分10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
5分钟前
MTF完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
赘婿应助moonsea0415采纳,获得10
6分钟前
任性的紫翠完成签到,获得积分10
6分钟前
活泼雪碧完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633472
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723