A review of data-driven fault detection and diagnosis methods: applications in chemical process systems

计算机科学 过程(计算) 故障检测与隔离 机器学习 人工智能 数据挖掘 人工神经网络 主成分分析 线性判别分析 化学过程 模式识别(心理学) 工程类 化学工程 操作系统 执行机构
作者
Norazwan Md Nor,Che Rosmani Che Hassan,Musa Hussain
出处
期刊:Reviews in Chemical Engineering [De Gruyter]
卷期号:36 (4): 513-553 被引量:105
标识
DOI:10.1515/revce-2017-0069
摘要

Abstract Fault detection and diagnosis (FDD) systems are developed to characterize normal variations and detect abnormal changes in a process plant. It is always important for early detection and diagnosis, especially in chemical process systems to prevent process disruptions, shutdowns, or even process failures. However, there have been only limited reviews of data-driven FDD methods published in the literature. Therefore, the aim of this review is to provide the state-of-the-art reference for chemical engineers and to promote the application of data-driven FDD methods in chemical process systems. In general, there are two different groups of data-driven FDD methods: the multivariate statistical analysis and the machine learning approaches, which are widely accepted and applied in various industrial processes, including chemicals, pharmaceuticals, and polymers. Many different multivariate statistical analysis methods have been proposed in the literature, such as principal component analysis, partial least squares, independent component analysis, and Fisher discriminant analysis, while the machine learning approaches include artificial neural networks, neuro-fuzzy methods, support vector machine, Gaussian mixture model, K-nearest neighbor, and Bayesian network. In the first part, this review intends to provide a comprehensive literature review on applications of data-driven methods in FDD systems for chemical process systems. In addition, the hybrid FDD frameworks have also been reviewed by discussing the distinct advantages and various constraints, with some applications as examples. However, the choice for the data-driven FDD methods is not a straightforward issue. Thus, in the second part, this paper provides a guideline for selecting the best possible data-driven method for FDD systems based on their faults. Finally, future directions of data-driven FDD methods are summarized with the intent to expand the use for the process monitoring community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神经哇完成签到,获得积分10
1秒前
热心乌完成签到,获得积分0
1秒前
良辰应助桂子树采纳,获得10
2秒前
2秒前
十月秋风G完成签到,获得积分10
3秒前
3秒前
加油发布了新的文献求助10
3秒前
5秒前
怪胎完成签到,获得积分10
5秒前
外向毛巾完成签到,获得积分20
5秒前
TWei完成签到 ,获得积分20
5秒前
6秒前
6秒前
Muy完成签到,获得积分10
6秒前
李李完成签到,获得积分10
6秒前
阳阳阳完成签到,获得积分10
6秒前
ZEND完成签到,获得积分10
7秒前
7秒前
7秒前
神光发布了新的文献求助10
7秒前
8秒前
搬运工应助笑哈哈采纳,获得30
8秒前
Barry完成签到,获得积分10
8秒前
外向毛巾发布了新的文献求助10
8秒前
大罗完成签到,获得积分10
9秒前
万能图书馆应助nelson采纳,获得10
9秒前
9秒前
9秒前
hao完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
YBY发布了新的文献求助10
11秒前
南漂完成签到,获得积分10
11秒前
11秒前
踏实志泽发布了新的文献求助10
12秒前
12秒前
eloasankey发布了新的文献求助10
13秒前
bkagyin应助xixiz1024采纳,获得10
13秒前
可盐够完成签到 ,获得积分10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167852
求助须知:如何正确求助?哪些是违规求助? 2819220
关于积分的说明 7925634
捐赠科研通 2479112
什么是DOI,文献DOI怎么找? 1320642
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443