亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A review of data-driven fault detection and diagnosis methods: applications in chemical process systems

计算机科学 过程(计算) 故障检测与隔离 机器学习 人工智能 数据挖掘 人工神经网络 主成分分析 线性判别分析 化学过程 模式识别(心理学) 工程类 化学工程 操作系统 执行机构
作者
Norazwan Md Nor,Che Rosmani Che Hassan,Musa Hussain
出处
期刊:Reviews in Chemical Engineering [De Gruyter]
卷期号:36 (4): 513-553 被引量:105
标识
DOI:10.1515/revce-2017-0069
摘要

Abstract Fault detection and diagnosis (FDD) systems are developed to characterize normal variations and detect abnormal changes in a process plant. It is always important for early detection and diagnosis, especially in chemical process systems to prevent process disruptions, shutdowns, or even process failures. However, there have been only limited reviews of data-driven FDD methods published in the literature. Therefore, the aim of this review is to provide the state-of-the-art reference for chemical engineers and to promote the application of data-driven FDD methods in chemical process systems. In general, there are two different groups of data-driven FDD methods: the multivariate statistical analysis and the machine learning approaches, which are widely accepted and applied in various industrial processes, including chemicals, pharmaceuticals, and polymers. Many different multivariate statistical analysis methods have been proposed in the literature, such as principal component analysis, partial least squares, independent component analysis, and Fisher discriminant analysis, while the machine learning approaches include artificial neural networks, neuro-fuzzy methods, support vector machine, Gaussian mixture model, K-nearest neighbor, and Bayesian network. In the first part, this review intends to provide a comprehensive literature review on applications of data-driven methods in FDD systems for chemical process systems. In addition, the hybrid FDD frameworks have also been reviewed by discussing the distinct advantages and various constraints, with some applications as examples. However, the choice for the data-driven FDD methods is not a straightforward issue. Thus, in the second part, this paper provides a guideline for selecting the best possible data-driven method for FDD systems based on their faults. Finally, future directions of data-driven FDD methods are summarized with the intent to expand the use for the process monitoring community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andrew完成签到,获得积分10
9秒前
月军完成签到,获得积分10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
herococa应助科研通管家采纳,获得10
23秒前
32秒前
guoao发布了新的文献求助10
38秒前
打打应助D調采纳,获得30
39秒前
Celia应助徐5V采纳,获得30
44秒前
YifanWang应助科研通管家采纳,获得10
2分钟前
herococa应助科研通管家采纳,获得10
2分钟前
herococa应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
糟糕的颜完成签到 ,获得积分10
2分钟前
遇上就这样吧应助大道要熬采纳,获得100
2分钟前
韩涵完成签到 ,获得积分10
3分钟前
大道要熬完成签到,获得积分10
3分钟前
蜗牛你行完成签到,获得积分10
4分钟前
guoao发布了新的文献求助10
4分钟前
愔愔应助蜗牛你行采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
嗯嗯嗯完成签到,获得积分10
4分钟前
Lin关注了科研通微信公众号
5分钟前
领导范儿应助xurilaixi采纳,获得10
6分钟前
6分钟前
xurilaixi发布了新的文献求助10
6分钟前
6分钟前
YifanWang应助科研通管家采纳,获得40
6分钟前
YifanWang应助科研通管家采纳,获得10
6分钟前
YifanWang应助科研通管家采纳,获得10
6分钟前
xurilaixi完成签到,获得积分10
6分钟前
Lin发布了新的文献求助10
6分钟前
kanwenxian完成签到,获得积分10
6分钟前
忧郁小鸽子完成签到,获得积分10
6分钟前
obedVL完成签到,获得积分10
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Ricci Solitons in Dimensions 4 and Higher 470
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4779970
求助须知:如何正确求助?哪些是违规求助? 4109964
关于积分的说明 12713976
捐赠科研通 3832822
什么是DOI,文献DOI怎么找? 2113970
邀请新用户注册赠送积分活动 1137349
关于科研通互助平台的介绍 1022036