A review of data-driven fault detection and diagnosis methods: applications in chemical process systems

计算机科学 过程(计算) 故障检测与隔离 机器学习 人工智能 数据挖掘 人工神经网络 主成分分析 线性判别分析 化学过程 模式识别(心理学) 工程类 化学工程 操作系统 执行机构
作者
Norazwan Md Nor,Che Rosmani Che Hassan,Musa Hussain
出处
期刊:Reviews in Chemical Engineering [De Gruyter]
卷期号:36 (4): 513-553 被引量:105
标识
DOI:10.1515/revce-2017-0069
摘要

Abstract Fault detection and diagnosis (FDD) systems are developed to characterize normal variations and detect abnormal changes in a process plant. It is always important for early detection and diagnosis, especially in chemical process systems to prevent process disruptions, shutdowns, or even process failures. However, there have been only limited reviews of data-driven FDD methods published in the literature. Therefore, the aim of this review is to provide the state-of-the-art reference for chemical engineers and to promote the application of data-driven FDD methods in chemical process systems. In general, there are two different groups of data-driven FDD methods: the multivariate statistical analysis and the machine learning approaches, which are widely accepted and applied in various industrial processes, including chemicals, pharmaceuticals, and polymers. Many different multivariate statistical analysis methods have been proposed in the literature, such as principal component analysis, partial least squares, independent component analysis, and Fisher discriminant analysis, while the machine learning approaches include artificial neural networks, neuro-fuzzy methods, support vector machine, Gaussian mixture model, K-nearest neighbor, and Bayesian network. In the first part, this review intends to provide a comprehensive literature review on applications of data-driven methods in FDD systems for chemical process systems. In addition, the hybrid FDD frameworks have also been reviewed by discussing the distinct advantages and various constraints, with some applications as examples. However, the choice for the data-driven FDD methods is not a straightforward issue. Thus, in the second part, this paper provides a guideline for selecting the best possible data-driven method for FDD systems based on their faults. Finally, future directions of data-driven FDD methods are summarized with the intent to expand the use for the process monitoring community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
huahua完成签到,获得积分10
1秒前
英俊的铭应助dry采纳,获得10
2秒前
小橘完成签到,获得积分10
3秒前
3秒前
琥1完成签到,获得积分10
3秒前
maguodrgon发布了新的文献求助10
4秒前
虚幻的亦旋完成签到,获得积分10
4秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
Babytucky发布了新的文献求助10
7秒前
柴鱼完成签到,获得积分10
9秒前
零琳完成签到 ,获得积分20
10秒前
雪王完成签到,获得积分10
10秒前
11秒前
11秒前
NexusExplorer应助炫彩小陈采纳,获得10
11秒前
14秒前
顾矜应助mds采纳,获得10
16秒前
17秒前
kaier完成签到 ,获得积分0
18秒前
18秒前
19秒前
20秒前
zhuwei完成签到,获得积分10
21秒前
希音发布了新的文献求助10
21秒前
huahua发布了新的文献求助10
22秒前
小鹿呀完成签到,获得积分10
22秒前
23秒前
crescent发布了新的文献求助20
24秒前
25秒前
Babytucky完成签到,获得积分20
25秒前
卜念发布了新的文献求助10
25秒前
正版DY完成签到,获得积分10
26秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
终归发布了新的文献求助10
27秒前
27秒前
27秒前
小二郎应助整齐的尔阳采纳,获得10
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514