亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A review of data-driven fault detection and diagnosis methods: applications in chemical process systems

计算机科学 过程(计算) 故障检测与隔离 机器学习 人工智能 数据挖掘 人工神经网络 主成分分析 线性判别分析 化学过程 模式识别(心理学) 工程类 化学工程 操作系统 执行机构
作者
Norazwan Md Nor,Che Rosmani Che Hassan,Musa Hussain
出处
期刊:Reviews in Chemical Engineering [De Gruyter]
卷期号:36 (4): 513-553 被引量:105
标识
DOI:10.1515/revce-2017-0069
摘要

Abstract Fault detection and diagnosis (FDD) systems are developed to characterize normal variations and detect abnormal changes in a process plant. It is always important for early detection and diagnosis, especially in chemical process systems to prevent process disruptions, shutdowns, or even process failures. However, there have been only limited reviews of data-driven FDD methods published in the literature. Therefore, the aim of this review is to provide the state-of-the-art reference for chemical engineers and to promote the application of data-driven FDD methods in chemical process systems. In general, there are two different groups of data-driven FDD methods: the multivariate statistical analysis and the machine learning approaches, which are widely accepted and applied in various industrial processes, including chemicals, pharmaceuticals, and polymers. Many different multivariate statistical analysis methods have been proposed in the literature, such as principal component analysis, partial least squares, independent component analysis, and Fisher discriminant analysis, while the machine learning approaches include artificial neural networks, neuro-fuzzy methods, support vector machine, Gaussian mixture model, K-nearest neighbor, and Bayesian network. In the first part, this review intends to provide a comprehensive literature review on applications of data-driven methods in FDD systems for chemical process systems. In addition, the hybrid FDD frameworks have also been reviewed by discussing the distinct advantages and various constraints, with some applications as examples. However, the choice for the data-driven FDD methods is not a straightforward issue. Thus, in the second part, this paper provides a guideline for selecting the best possible data-driven method for FDD systems based on their faults. Finally, future directions of data-driven FDD methods are summarized with the intent to expand the use for the process monitoring community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zxy发布了新的文献求助10
2秒前
不被定义的风完成签到,获得积分10
3秒前
4秒前
lanmi完成签到,获得积分10
9秒前
Akim应助笨笨的元风采纳,获得10
10秒前
清逸发布了新的文献求助10
10秒前
XIA发布了新的文献求助10
10秒前
六个核桃完成签到,获得积分10
10秒前
一个绝望的文盲x完成签到,获得积分10
16秒前
无花果应助zxy采纳,获得10
19秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
22秒前
zxy完成签到,获得积分20
27秒前
王火火完成签到 ,获得积分10
32秒前
LYQ完成签到,获得积分10
35秒前
35秒前
Criminology34应助科研通管家采纳,获得10
41秒前
Criminology34应助科研通管家采纳,获得10
41秒前
Criminology34应助科研通管家采纳,获得10
41秒前
41秒前
Criminology34应助科研通管家采纳,获得10
41秒前
42秒前
快乐的晗发布了新的文献求助10
42秒前
还好还好发布了新的文献求助10
46秒前
猕猴桃发布了新的文献求助10
47秒前
虚拟的清炎完成签到 ,获得积分10
50秒前
天师神算完成签到,获得积分10
50秒前
丘比特应助三重积分咖啡采纳,获得10
52秒前
53秒前
lovelife完成签到,获得积分10
55秒前
年鱼精完成签到 ,获得积分10
56秒前
kiko发布了新的文献求助20
58秒前
1分钟前
孙成成完成签到 ,获得积分10
1分钟前
姜姗完成签到 ,获得积分10
1分钟前
wx完成签到 ,获得积分10
1分钟前
赘婿应助lulu采纳,获得10
1分钟前
Jessica完成签到,获得积分10
1分钟前
勤劳云朵完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548989
求助须知:如何正确求助?哪些是违规求助? 4634415
关于积分的说明 14634428
捐赠科研通 4575749
什么是DOI,文献DOI怎么找? 2509284
邀请新用户注册赠送积分活动 1485264
关于科研通互助平台的介绍 1456346