A review of data-driven fault detection and diagnosis methods: applications in chemical process systems

计算机科学 过程(计算) 故障检测与隔离 机器学习 人工智能 数据挖掘 人工神经网络 主成分分析 线性判别分析 化学过程 模式识别(心理学) 工程类 化学工程 操作系统 执行机构
作者
Norazwan Md Nor,Che Rosmani Che Hassan,Musa Hussain
出处
期刊:Reviews in Chemical Engineering [De Gruyter]
卷期号:36 (4): 513-553 被引量:105
标识
DOI:10.1515/revce-2017-0069
摘要

Abstract Fault detection and diagnosis (FDD) systems are developed to characterize normal variations and detect abnormal changes in a process plant. It is always important for early detection and diagnosis, especially in chemical process systems to prevent process disruptions, shutdowns, or even process failures. However, there have been only limited reviews of data-driven FDD methods published in the literature. Therefore, the aim of this review is to provide the state-of-the-art reference for chemical engineers and to promote the application of data-driven FDD methods in chemical process systems. In general, there are two different groups of data-driven FDD methods: the multivariate statistical analysis and the machine learning approaches, which are widely accepted and applied in various industrial processes, including chemicals, pharmaceuticals, and polymers. Many different multivariate statistical analysis methods have been proposed in the literature, such as principal component analysis, partial least squares, independent component analysis, and Fisher discriminant analysis, while the machine learning approaches include artificial neural networks, neuro-fuzzy methods, support vector machine, Gaussian mixture model, K-nearest neighbor, and Bayesian network. In the first part, this review intends to provide a comprehensive literature review on applications of data-driven methods in FDD systems for chemical process systems. In addition, the hybrid FDD frameworks have also been reviewed by discussing the distinct advantages and various constraints, with some applications as examples. However, the choice for the data-driven FDD methods is not a straightforward issue. Thus, in the second part, this paper provides a guideline for selecting the best possible data-driven method for FDD systems based on their faults. Finally, future directions of data-driven FDD methods are summarized with the intent to expand the use for the process monitoring community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助嘿嘿采纳,获得10
刚刚
太阳发布了新的文献求助10
刚刚
2秒前
露露发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助刚刚好采纳,获得10
4秒前
古月博士完成签到,获得积分10
4秒前
5秒前
bluefiber发布了新的文献求助10
6秒前
慕辰完成签到,获得积分10
6秒前
prime完成签到,获得积分10
6秒前
传奇3应助任性宇豪采纳,获得10
7秒前
7秒前
青尘如墨完成签到 ,获得积分10
7秒前
眼睛小海盐完成签到,获得积分10
8秒前
露露完成签到,获得积分10
8秒前
姿姿完成签到,获得积分10
8秒前
8秒前
9秒前
起飞的小辣椒完成签到,获得积分10
9秒前
10秒前
神勇语堂完成签到 ,获得积分10
10秒前
caozhi完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
无花果应助太阳采纳,获得10
13秒前
唐礼祥发布了新的文献求助10
13秒前
刘某发布了新的文献求助10
14秒前
caozhi发布了新的文献求助10
14秒前
嘿嘿发布了新的文献求助10
15秒前
玖月发布了新的文献求助10
16秒前
科研通AI6应助小李呀采纳,获得10
17秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
Owen应助撒旦采纳,获得10
21秒前
木青仙子完成签到,获得积分10
23秒前
李昕123完成签到 ,获得积分10
23秒前
王博龙完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069566
求助须知:如何正确求助?哪些是违规求助? 4290887
关于积分的说明 13368927
捐赠科研通 4111055
什么是DOI,文献DOI怎么找? 2251251
邀请新用户注册赠送积分活动 1256459
关于科研通互助平台的介绍 1188939