A review of data-driven fault detection and diagnosis methods: applications in chemical process systems

计算机科学 过程(计算) 故障检测与隔离 机器学习 人工智能 数据挖掘 人工神经网络 主成分分析 线性判别分析 化学过程 模式识别(心理学) 工程类 化学工程 操作系统 执行机构
作者
Norazwan Md Nor,Che Rosmani Che Hassan,Musa Hussain
出处
期刊:Reviews in Chemical Engineering [De Gruyter]
卷期号:36 (4): 513-553 被引量:105
标识
DOI:10.1515/revce-2017-0069
摘要

Abstract Fault detection and diagnosis (FDD) systems are developed to characterize normal variations and detect abnormal changes in a process plant. It is always important for early detection and diagnosis, especially in chemical process systems to prevent process disruptions, shutdowns, or even process failures. However, there have been only limited reviews of data-driven FDD methods published in the literature. Therefore, the aim of this review is to provide the state-of-the-art reference for chemical engineers and to promote the application of data-driven FDD methods in chemical process systems. In general, there are two different groups of data-driven FDD methods: the multivariate statistical analysis and the machine learning approaches, which are widely accepted and applied in various industrial processes, including chemicals, pharmaceuticals, and polymers. Many different multivariate statistical analysis methods have been proposed in the literature, such as principal component analysis, partial least squares, independent component analysis, and Fisher discriminant analysis, while the machine learning approaches include artificial neural networks, neuro-fuzzy methods, support vector machine, Gaussian mixture model, K-nearest neighbor, and Bayesian network. In the first part, this review intends to provide a comprehensive literature review on applications of data-driven methods in FDD systems for chemical process systems. In addition, the hybrid FDD frameworks have also been reviewed by discussing the distinct advantages and various constraints, with some applications as examples. However, the choice for the data-driven FDD methods is not a straightforward issue. Thus, in the second part, this paper provides a guideline for selecting the best possible data-driven method for FDD systems based on their faults. Finally, future directions of data-driven FDD methods are summarized with the intent to expand the use for the process monitoring community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
老实用户完成签到 ,获得积分10
2秒前
Sakura完成签到 ,获得积分10
2秒前
hui发布了新的文献求助10
2秒前
满意的迎南完成签到 ,获得积分10
3秒前
苗条小霸王完成签到,获得积分10
3秒前
康康发布了新的文献求助10
3秒前
4秒前
粗犷的世平完成签到,获得积分10
5秒前
小坨坨发布了新的文献求助10
5秒前
完美世界应助12采纳,获得10
6秒前
个性的紫菜应助小黄豆采纳,获得70
6秒前
雨寒发布了新的文献求助50
7秒前
威武的水之完成签到,获得积分10
7秒前
沉潜完成签到,获得积分10
8秒前
demo完成签到,获得积分10
8秒前
一包辣条发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
pomelost完成签到,获得积分10
11秒前
炙热ding完成签到,获得积分10
13秒前
13秒前
Hello应助康康采纳,获得10
14秒前
14秒前
15秒前
tiantu发布了新的文献求助10
15秒前
15秒前
SJW123完成签到 ,获得积分10
15秒前
eternity136发布了新的文献求助10
15秒前
Vivian发布了新的文献求助10
15秒前
阿杰完成签到,获得积分10
16秒前
16秒前
aqiuyuehe发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403