Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning

计算机科学 流量(计算机网络) 卷积神经网络 期限(时间) 深度学习 数据挖掘 人工智能 人工神经网络 卷积(计算机科学) 特征(语言学) 机器学习 计算机安全 语言学 量子力学 物理 哲学
作者
Weibin Zhang,Yinghao Yu,Yong Qi,Feng Shu,Yinhai Wang
出处
期刊:Transportmetrica [Informa]
卷期号:15 (2): 1688-1711 被引量:262
标识
DOI:10.1080/23249935.2019.1637966
摘要

Accurate short-term traffic flow forecasting facilitates active traffic control and trip planning. Most existing traffic flow models fail to make full use of the temporal and spatial features of traffic data. This study proposes a short-term traffic flow prediction model based on a convolution neural network (CNN) deep learning framework. In the proposed framework, the optimal input data time lags and amounts of spatial data are determined by a spatio-temporal feature selection algorithm (STFSA), and selected spatio-temporal traffic flow features are extracted from actual data and converted into a two-dimensional matrix. The CNN then learns these features to construct a predictive model. The effectiveness of the proposed method is evaluated by comparing the forecast results with actual traffic data. Other existing models are also evaluated for comparison. The proposed method outperforms baseline models in terms of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
快乐滑板完成签到,获得积分0
1秒前
白小白发布了新的文献求助10
2秒前
陈淑玲完成签到,获得积分10
2秒前
3秒前
小刺发布了新的文献求助10
3秒前
机灵安白完成签到 ,获得积分10
4秒前
科研通AI5应助夏夏采纳,获得10
5秒前
酷波er应助夏夏采纳,获得10
5秒前
NexusExplorer应助夏夏采纳,获得10
5秒前
科研通AI2S应助夏夏采纳,获得10
5秒前
积极冷霜发布了新的文献求助10
5秒前
5秒前
Ava应助夏夏采纳,获得10
5秒前
科目三应助夏夏采纳,获得10
5秒前
丘比特应助夏夏采纳,获得10
5秒前
小马甲应助夏夏采纳,获得10
5秒前
5秒前
wary发布了新的文献求助10
6秒前
Genius完成签到,获得积分10
6秒前
张掖发布了新的文献求助10
8秒前
金虎完成签到,获得积分10
8秒前
小董不懂完成签到,获得积分10
8秒前
大晨发布了新的文献求助10
8秒前
斯文败类应助Liu采纳,获得10
9秒前
李爱国应助脆弱的仙人掌采纳,获得10
10秒前
打打应助张自信采纳,获得10
10秒前
10秒前
虚幻羊发布了新的文献求助10
11秒前
沙拉发布了新的文献求助10
11秒前
iNk应助陈淑玲采纳,获得10
11秒前
科研通AI2S应助BWZ采纳,获得10
11秒前
11秒前
12秒前
Ade完成签到,获得积分10
13秒前
13秒前
lx840518发布了新的文献求助10
13秒前
兴奋大开完成签到,获得积分10
14秒前
虚幻羊完成签到,获得积分20
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762