亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning

计算机科学 流量(计算机网络) 卷积神经网络 期限(时间) 深度学习 数据挖掘 人工智能 人工神经网络 卷积(计算机科学) 特征(语言学) 机器学习 计算机安全 语言学 量子力学 物理 哲学
作者
Weibin Zhang,Yinghao Yu,Yong Qi,Feng Shu,Yinhai Wang
出处
期刊:Transportmetrica [Informa]
卷期号:15 (2): 1688-1711 被引量:262
标识
DOI:10.1080/23249935.2019.1637966
摘要

Accurate short-term traffic flow forecasting facilitates active traffic control and trip planning. Most existing traffic flow models fail to make full use of the temporal and spatial features of traffic data. This study proposes a short-term traffic flow prediction model based on a convolution neural network (CNN) deep learning framework. In the proposed framework, the optimal input data time lags and amounts of spatial data are determined by a spatio-temporal feature selection algorithm (STFSA), and selected spatio-temporal traffic flow features are extracted from actual data and converted into a two-dimensional matrix. The CNN then learns these features to construct a predictive model. The effectiveness of the proposed method is evaluated by comparing the forecast results with actual traffic data. Other existing models are also evaluated for comparison. The proposed method outperforms baseline models in terms of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lee发布了新的文献求助10
2秒前
4秒前
hms发布了新的文献求助10
9秒前
今后应助贪玩的一曲采纳,获得30
19秒前
资明轩完成签到,获得积分10
24秒前
34秒前
lixuebin完成签到 ,获得积分10
35秒前
wangwangwang完成签到,获得积分10
37秒前
38秒前
YL完成签到,获得积分10
39秒前
XIA完成签到 ,获得积分10
39秒前
QYR发布了新的文献求助10
42秒前
完美世界应助yingying采纳,获得10
43秒前
粥喝不喝发布了新的文献求助10
44秒前
45秒前
所所应助火星上以南采纳,获得10
47秒前
某某某发布了新的文献求助10
51秒前
zzzhhh发布了新的文献求助30
54秒前
粥喝不喝完成签到,获得积分10
54秒前
爆米花应助snah采纳,获得30
59秒前
1分钟前
科研通AI2S应助某某某采纳,获得10
1分钟前
zzzhhh完成签到,获得积分10
1分钟前
小卡啦完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助标致的元柏采纳,获得10
1分钟前
tracey完成签到 ,获得积分10
1分钟前
酷波er应助某某某采纳,获得10
1分钟前
dxwy完成签到,获得积分10
1分钟前
儒雅的若翠完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
monster完成签到 ,获得积分10
1分钟前
结实的凌波完成签到,获得积分20
1分钟前
NexusExplorer应助骆十八采纳,获得30
1分钟前
QYR完成签到,获得积分10
1分钟前
1分钟前
星辰大海应助xuan采纳,获得10
1分钟前
文静的峻熙完成签到,获得积分10
1分钟前
番茄发布了新的文献求助10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499960
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428784
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382