Robust Graph Regularized NMF with Dissimilarity and Similarity Constraints for ScRNA-seq Data Clustering

聚类分析 非负矩阵分解 计算机科学 人工智能 稳健性(进化) 矩阵分解 模式识别(心理学) 图形 维数之咒 数据挖掘 数学 特征向量 理论计算机科学 物理 基因 量子力学 生物化学 化学
作者
Zhenqiu Shu,Qinghan Long,Luping Zhang,Zhengtao Yu,Xiao‐Jun Wu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (23): 6271-6286 被引量:13
标识
DOI:10.1021/acs.jcim.2c01305
摘要

The notable progress in single-cell RNA sequencing (ScRNA-seq) technology is beneficial to accurately discover the heterogeneity and diversity of cells. Clustering is an extremely important step during the ScRNA-seq data analysis. However, it cannot achieve satisfactory performances by directly clustering ScRNA-seq data due to its high dimensionality and noise. To address these issues, we propose a novel ScRNA-seq data representation model, termed Robust Graph regularized Non-Negative Matrix Factorization with Dissimilarity and Similarity constraints (RGNMF-DS), for ScRNA-seq data clustering. To accurately characterize the structure information of the labeled samples and the unlabeled samples, respectively, the proposed RGNMF-DS model adopts a couple of complementary regularizers (i.e., similarity and dissimilar regularizers) to guide matrix decomposition. In addition, we construct a graph regularizer to discover the local geometric structure hidden in ScRNA-seq data. Moreover, we adopt the l2,1-norm to measure the reconstruction error and thereby effectively improve the robustness of the proposed RGNMF-DS model to the noises. Experimental results on several ScRNA-seq datasets have demonstrated that our proposed RGNMF-DS model outperforms other state-of-the-art competitors in clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小柒完成签到 ,获得积分10
1秒前
聪慧芷巧发布了新的文献求助10
2秒前
3秒前
7秒前
蓝意完成签到,获得积分0
8秒前
xiaohongmao完成签到,获得积分10
13秒前
16秒前
qweerrtt完成签到,获得积分10
23秒前
23秒前
与共发布了新的文献求助10
24秒前
carly完成签到 ,获得积分10
25秒前
颢懿完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
31秒前
ljc完成签到 ,获得积分10
32秒前
Java完成签到,获得积分10
36秒前
38秒前
鲤鱼安青完成签到 ,获得积分10
40秒前
40秒前
dollarpuff完成签到 ,获得积分10
43秒前
43秒前
mmmmmMM完成签到,获得积分10
50秒前
luckweb完成签到,获得积分10
56秒前
猫的毛完成签到 ,获得积分10
57秒前
nicky完成签到 ,获得积分10
58秒前
麦子完成签到 ,获得积分10
59秒前
59秒前
Wilson完成签到 ,获得积分10
1分钟前
luckweb发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
传奇3应助wujiwuhui采纳,获得10
1分钟前
开心寄松完成签到,获得积分10
1分钟前
北宫完成签到 ,获得积分10
1分钟前
wansida完成签到,获得积分10
1分钟前
QXS完成签到 ,获得积分10
1分钟前
1分钟前
菠萝完成签到 ,获得积分10
1分钟前
领导范儿应助Villanellel采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022