光催化
纳米棒
制氢
电子
分解水
氢
光催化分解水
化学
载流子
重组
电子转移
化学物理
材料科学
光化学
纳米技术
化学工程
物理
光电子学
催化作用
有机化学
量子力学
生物化学
工程类
基因
作者
Wenhuan Huang,Chenyang Su,Chen Zhu,Tingting Bo,Shouwei Zuo,Wei Zhou,Yuanfu Ren,Yanan Zhang,Jing Zhang,Magnus Rueping,Huabin Zhang
标识
DOI:10.1002/ange.202304634
摘要
Abstract The solar‐driven evolution of hydrogen from water using particulate photocatalysts is considered one of the most economical and promising protocols for achieving a stable supply of renewable energy. However, the efficiency of photocatalytic water splitting is far from satisfactory due to the sluggish electron‐hole pair separation kinetics. Herein, isolated Mo atoms in a high oxidation state have been incorporated into the lattice of Cd 0.5 Zn 0.5 S (CZS@Mo) nanorods, which exhibit photocatalytic hydrogen evolution rate of 11.32 mmol g −1 h −1 (226.4 μmol h −1 ; catalyst dosage 20 mg). Experimental and theoretical simulation results imply that the highly oxidized Mo species lead to mobile‐charge imbalances in CZS and induce the directional photogenerated electrons transfer, resulting in effectively inhibited electron‐hole recombination and greatly enhanced photocatalytic efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI