Robust analysis of cancer heterogeneity for high‐dimensional data

协变量 估计员 计算机科学 成对比较 离群值 鉴定(生物学) 数据挖掘 一致性(知识库) 特征选择 统计 机器学习 人工智能 数学 植物 生物
作者
Chao Cheng,Xingdong Feng,Xiaoguang Li,Mengyun Wu
出处
期刊:Statistics in Medicine [Wiley]
卷期号:41 (27): 5448-5462 被引量:3
标识
DOI:10.1002/sim.9578
摘要

Cancer heterogeneity plays an important role in the understanding of tumor etiology, progression, and response to treatment. To accommodate heterogeneity, cancer subgroup analysis has been extensively conducted. However, most of the existing studies share the limitation that they cannot accommodate heavy-tailed or contaminated outcomes and also high dimensional covariates, both of which are not uncommon in biomedical research. In this study, we propose a robust subgroup identification approach based on M-estimators together with concave and pairwise fusion penalties, which advances from existing studies by effectively accommodating high-dimensional data containing some outliers. The penalties are applied on both latent heterogeneity factors and covariates, where the estimation is expected to achieve subgroup identification and variable selection simultaneously, with the number of subgroups being apriori unknown. We innovatively develop an algorithm based on parallel computing strategy, with a significant advantage of capable of processing large-scale data. The convergence property of the proposed algorithm, oracle property of the penalized M-estimators, and selection consistency of the proposed BIC criterion are carefully established. Simulation and analysis of TCGA breast cancer data demonstrate that the proposed approach is promising to efficiently identify underlying subgroups in high-dimensional data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真小蚂蚁完成签到,获得积分10
刚刚
坚定芷烟完成签到,获得积分10
刚刚
1秒前
liuhuayaxi发布了新的文献求助20
1秒前
caigou发布了新的文献求助10
1秒前
执着的飞荷完成签到,获得积分10
2秒前
活力的青旋完成签到 ,获得积分10
2秒前
2秒前
wangly发布了新的文献求助10
3秒前
亚鹏发布了新的文献求助10
3秒前
4秒前
KQ发布了新的文献求助10
4秒前
dropofwater完成签到,获得积分10
4秒前
FRANKFANG发布了新的文献求助30
4秒前
guulee完成签到,获得积分10
4秒前
小蓝莓完成签到,获得积分10
4秒前
bkagyin应助小卡拉米采纳,获得10
4秒前
5秒前
5秒前
wang完成签到,获得积分10
5秒前
5秒前
6秒前
科研通AI2S应助liu采纳,获得20
6秒前
6秒前
晓风残月完成签到,获得积分10
7秒前
7秒前
酷波er应助kdfdds采纳,获得10
7秒前
桐桐应助xiaojinzi采纳,获得10
7秒前
7秒前
卡卡西西西完成签到,获得积分10
8秒前
8秒前
9秒前
愉快的老三完成签到,获得积分10
9秒前
up关闭了up文献求助
10秒前
10秒前
10秒前
10秒前
冷酷紫蓝发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233