Robust analysis of cancer heterogeneity for high‐dimensional data

协变量 估计员 计算机科学 成对比较 离群值 鉴定(生物学) 数据挖掘 一致性(知识库) 特征选择 统计 机器学习 人工智能 数学 植物 生物
作者
Chao Cheng,Xingdong Feng,Xiaoguang Li,Mengyun Wu
出处
期刊:Statistics in Medicine [Wiley]
卷期号:41 (27): 5448-5462 被引量:3
标识
DOI:10.1002/sim.9578
摘要

Cancer heterogeneity plays an important role in the understanding of tumor etiology, progression, and response to treatment. To accommodate heterogeneity, cancer subgroup analysis has been extensively conducted. However, most of the existing studies share the limitation that they cannot accommodate heavy-tailed or contaminated outcomes and also high dimensional covariates, both of which are not uncommon in biomedical research. In this study, we propose a robust subgroup identification approach based on M-estimators together with concave and pairwise fusion penalties, which advances from existing studies by effectively accommodating high-dimensional data containing some outliers. The penalties are applied on both latent heterogeneity factors and covariates, where the estimation is expected to achieve subgroup identification and variable selection simultaneously, with the number of subgroups being apriori unknown. We innovatively develop an algorithm based on parallel computing strategy, with a significant advantage of capable of processing large-scale data. The convergence property of the proposed algorithm, oracle property of the penalized M-estimators, and selection consistency of the proposed BIC criterion are carefully established. Simulation and analysis of TCGA breast cancer data demonstrate that the proposed approach is promising to efficiently identify underlying subgroups in high-dimensional data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻舟者完成签到,获得积分10
1秒前
1秒前
1秒前
橘子屿布丁完成签到,获得积分10
2秒前
2秒前
Zhy完成签到,获得积分10
3秒前
bzy发布了新的文献求助10
3秒前
3秒前
风趣秋白完成签到,获得积分10
3秒前
情怀应助tanmeng77采纳,获得10
3秒前
若空完成签到 ,获得积分10
4秒前
典雅又夏发布了新的文献求助10
4秒前
XIXI完成签到,获得积分10
4秒前
5秒前
夏夏发布了新的文献求助10
5秒前
666完成签到,获得积分10
5秒前
5秒前
tzy完成签到,获得积分10
5秒前
Jackcaosky发布了新的文献求助200
5秒前
tt完成签到 ,获得积分10
6秒前
tennisgirl发布了新的文献求助30
6秒前
DDTT发布了新的文献求助10
7秒前
Li发布了新的文献求助10
8秒前
xiaozhang完成签到,获得积分10
8秒前
科研小民工应助Jinji采纳,获得200
8秒前
9秒前
Elaine完成签到,获得积分10
9秒前
h41692011完成签到 ,获得积分10
9秒前
斯文败类应助圆圆采纳,获得30
10秒前
李健的小迷弟应助7777777采纳,获得10
10秒前
涛浪驳回了田様应助
10秒前
10秒前
10秒前
11秒前
11秒前
个木发布了新的文献求助10
11秒前
上官若男应助SY采纳,获得10
12秒前
不易BY完成签到,获得积分10
12秒前
ee关闭了ee文献求助
12秒前
Ysh完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678