Robust analysis of cancer heterogeneity for high‐dimensional data

协变量 估计员 计算机科学 成对比较 离群值 鉴定(生物学) 数据挖掘 一致性(知识库) 特征选择 统计 机器学习 人工智能 数学 植物 生物
作者
Chao Cheng,Xingdong Feng,Xiaoguang Li,Mengyun Wu
出处
期刊:Statistics in Medicine [Wiley]
卷期号:41 (27): 5448-5462 被引量:3
标识
DOI:10.1002/sim.9578
摘要

Cancer heterogeneity plays an important role in the understanding of tumor etiology, progression, and response to treatment. To accommodate heterogeneity, cancer subgroup analysis has been extensively conducted. However, most of the existing studies share the limitation that they cannot accommodate heavy-tailed or contaminated outcomes and also high dimensional covariates, both of which are not uncommon in biomedical research. In this study, we propose a robust subgroup identification approach based on M-estimators together with concave and pairwise fusion penalties, which advances from existing studies by effectively accommodating high-dimensional data containing some outliers. The penalties are applied on both latent heterogeneity factors and covariates, where the estimation is expected to achieve subgroup identification and variable selection simultaneously, with the number of subgroups being apriori unknown. We innovatively develop an algorithm based on parallel computing strategy, with a significant advantage of capable of processing large-scale data. The convergence property of the proposed algorithm, oracle property of the penalized M-estimators, and selection consistency of the proposed BIC criterion are carefully established. Simulation and analysis of TCGA breast cancer data demonstrate that the proposed approach is promising to efficiently identify underlying subgroups in high-dimensional data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zenobia完成签到,获得积分10
刚刚
在水一方应助曾无忧采纳,获得10
刚刚
xiaoxiaoxiao完成签到,获得积分10
刚刚
笨笨山芙完成签到 ,获得积分10
刚刚
1秒前
李爱国应助联合工程采纳,获得10
1秒前
1秒前
顾矜应助Lze采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
李爱国应助duoduo采纳,获得10
3秒前
科研通AI6应助郭露露采纳,获得10
3秒前
Jasper应助Oil采纳,获得10
3秒前
领导范儿应助dhppp采纳,获得10
4秒前
4秒前
善良耳机完成签到,获得积分10
4秒前
4秒前
4秒前
动听皮带发布了新的文献求助30
4秒前
孟寐以求发布了新的文献求助20
4秒前
lyu完成签到,获得积分10
4秒前
4秒前
歌儿发布了新的文献求助10
6秒前
6秒前
沐浠完成签到 ,获得积分10
6秒前
6秒前
夜离殇完成签到,获得积分10
6秒前
呆萌幼晴发布了新的文献求助10
7秒前
福尔摩曦发布了新的文献求助20
7秒前
文艺聪健完成签到,获得积分10
7秒前
7秒前
Sea_moon完成签到,获得积分10
7秒前
宋仔仔爱吃糖完成签到,获得积分10
8秒前
8秒前
超级大聪明完成签到,获得积分10
8秒前
猫猫啸日发布了新的文献求助10
8秒前
8秒前
ABC熊ABC发布了新的文献求助20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017