Robust analysis of cancer heterogeneity for high‐dimensional data

协变量 估计员 计算机科学 成对比较 离群值 鉴定(生物学) 数据挖掘 一致性(知识库) 特征选择 统计 机器学习 人工智能 数学 植物 生物
作者
Chao Cheng,Xingdong Feng,Xiaoguang Li,Mengyun Wu
出处
期刊:Statistics in Medicine [Wiley]
卷期号:41 (27): 5448-5462 被引量:3
标识
DOI:10.1002/sim.9578
摘要

Cancer heterogeneity plays an important role in the understanding of tumor etiology, progression, and response to treatment. To accommodate heterogeneity, cancer subgroup analysis has been extensively conducted. However, most of the existing studies share the limitation that they cannot accommodate heavy-tailed or contaminated outcomes and also high dimensional covariates, both of which are not uncommon in biomedical research. In this study, we propose a robust subgroup identification approach based on M-estimators together with concave and pairwise fusion penalties, which advances from existing studies by effectively accommodating high-dimensional data containing some outliers. The penalties are applied on both latent heterogeneity factors and covariates, where the estimation is expected to achieve subgroup identification and variable selection simultaneously, with the number of subgroups being apriori unknown. We innovatively develop an algorithm based on parallel computing strategy, with a significant advantage of capable of processing large-scale data. The convergence property of the proposed algorithm, oracle property of the penalized M-estimators, and selection consistency of the proposed BIC criterion are carefully established. Simulation and analysis of TCGA breast cancer data demonstrate that the proposed approach is promising to efficiently identify underlying subgroups in high-dimensional data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助细雨采纳,获得10
1秒前
1秒前
安静碧灵完成签到,获得积分10
1秒前
1秒前
笔墨留香发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
w1发布了新的文献求助10
4秒前
ZJZALLEN完成签到 ,获得积分10
5秒前
5秒前
5秒前
特昂唐发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
9秒前
123完成签到,获得积分10
10秒前
妙松发布了新的文献求助10
11秒前
12秒前
12秒前
整齐岩完成签到,获得积分10
12秒前
jackdawjo发布了新的文献求助10
12秒前
13秒前
13秒前
任一笑发布了新的文献求助10
14秒前
bela发布了新的文献求助20
15秒前
我是老大应助喜悦的威采纳,获得10
15秒前
Liu完成签到,获得积分10
15秒前
15秒前
赘婿应助白潇潇采纳,获得10
16秒前
zhu发布了新的文献求助20
16秒前
FashionBoy应助吃饭饭采纳,获得10
16秒前
韩飞发布了新的文献求助10
18秒前
18秒前
乖猫要努力应助w1采纳,获得10
18秒前
香蕉觅云应助cfer采纳,获得10
18秒前
可可发布了新的文献求助10
18秒前
64658应助虚幻初之采纳,获得10
19秒前
20秒前
zhn完成签到,获得积分20
21秒前
香蕉觅云应助mym采纳,获得30
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975658
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200481
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806376