Subnetwork-Lossless Robust Watermarking for Hostile Theft Attacks in Deep Transfer Learning Models

计算机科学 数字水印 水印 子网 稳健性(进化) 人工智能 学习迁移 深度学习 机器学习 无损压缩 嵌入 利用 计算机安全 数据压缩 图像(数学) 基因 生物化学 化学
作者
Ju Jia,Yueming Wu,Anran Li,Siqi Ma,Yang Liu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:5
标识
DOI:10.1109/tdsc.2022.3194704
摘要

Recently, considerable progress has been made in providing solutions to prevent intellectual property (IP) theft for deep neural networks (DNNs) in ideal classification or recognition scenarios. However, little work has been dedicated to protecting the IP of DNN models in the context of transfer learning. Moreover, knowledge transfer is usually achieved through knowledge distillation or cross-domain distribution adaptation techniques, which will easily lead to the failure of the IP protection due to the high risk of the underlying DNN watermark being corrupted. To address this issue, we propose a subnetwork-lossless robust DNN watermarking (SRDW) framework, which can exploit out-of-distribution (OOD) guidance data augmentation to boost the robustness of watermarking. Specifically, we accurately seek the most rational modification structure (i.e., core subnetwork) using the module risk minimization, and then calculate the contrastive alignment error and the corresponding hash value as the reversible compensation information for the restoration of carrier network. Experimental results show that our scheme has superior robustness against various hostile attacks, such as fine-tuning, pruning, cross-domain matching, and overwriting. In the absence of malicious jamming attacks, the core subnetwork can be recovered without any loss. Besides that, we investigate how embedding watermarks in batch normalization (BN) layers affect the generalization performance of the deep transfer learning models, which reveals that reducing the embedding modifications in BN layers can further promote the robustness to resist hostile attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
LJL完成签到 ,获得积分10
2秒前
共享精神应助王碱采纳,获得10
3秒前
3秒前
魔幻乐安完成签到,获得积分10
3秒前
4秒前
z!完成签到 ,获得积分10
4秒前
Liar发布了新的文献求助10
5秒前
希望天下0贩的0应助山君采纳,获得30
6秒前
6秒前
星渊完成签到,获得积分10
7秒前
8秒前
8秒前
慕青应助shadowj1020采纳,获得10
8秒前
田様应助武雨寒采纳,获得10
8秒前
Lucas应助菜菜采纳,获得10
9秒前
Helfen发布了新的文献求助10
9秒前
热情依白完成签到,获得积分10
9秒前
峰feng发布了新的文献求助10
9秒前
10秒前
11秒前
张巨锋发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
热情依白发布了新的文献求助50
14秒前
Yikepp完成签到,获得积分10
15秒前
15秒前
guangshuang完成签到 ,获得积分10
16秒前
别整太拗口的完成签到,获得积分10
16秒前
16秒前
17秒前
Woshikeyandawang完成签到,获得积分10
18秒前
glj应助经锦程采纳,获得10
18秒前
鲜于冰彤完成签到,获得积分10
20秒前
20秒前
沉静小蚂蚁完成签到,获得积分10
20秒前
松籽完成签到 ,获得积分10
20秒前
菜菜发布了新的文献求助10
22秒前
wwyf发布了新的文献求助10
22秒前
小梁完成签到 ,获得积分10
23秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456137
求助须知:如何正确求助?哪些是违规求助? 4563122
关于积分的说明 14288019
捐赠科研通 4487479
什么是DOI,文献DOI怎么找? 2457948
邀请新用户注册赠送积分活动 1448323
关于科研通互助平台的介绍 1423904