Subnetwork-Lossless Robust Watermarking for Hostile Theft Attacks in Deep Transfer Learning Models

计算机科学 数字水印 水印 子网 稳健性(进化) 人工智能 学习迁移 深度学习 机器学习 无损压缩 嵌入 利用 计算机安全 数据压缩 图像(数学) 基因 生物化学 化学
作者
Ju Jia,Yueming Wu,Anran Li,Siqi Ma,Yang Liu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:5
标识
DOI:10.1109/tdsc.2022.3194704
摘要

Recently, considerable progress has been made in providing solutions to prevent intellectual property (IP) theft for deep neural networks (DNNs) in ideal classification or recognition scenarios. However, little work has been dedicated to protecting the IP of DNN models in the context of transfer learning. Moreover, knowledge transfer is usually achieved through knowledge distillation or cross-domain distribution adaptation techniques, which will easily lead to the failure of the IP protection due to the high risk of the underlying DNN watermark being corrupted. To address this issue, we propose a subnetwork-lossless robust DNN watermarking (SRDW) framework, which can exploit out-of-distribution (OOD) guidance data augmentation to boost the robustness of watermarking. Specifically, we accurately seek the most rational modification structure (i.e., core subnetwork) using the module risk minimization, and then calculate the contrastive alignment error and the corresponding hash value as the reversible compensation information for the restoration of carrier network. Experimental results show that our scheme has superior robustness against various hostile attacks, such as fine-tuning, pruning, cross-domain matching, and overwriting. In the absence of malicious jamming attacks, the core subnetwork can be recovered without any loss. Besides that, we investigate how embedding watermarks in batch normalization (BN) layers affect the generalization performance of the deep transfer learning models, which reveals that reducing the embedding modifications in BN layers can further promote the robustness to resist hostile attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李小颜完成签到,获得积分10
刚刚
xinyue946983发布了新的文献求助10
刚刚
刚刚
xingyu完成签到 ,获得积分10
1秒前
共享精神应助田富贵采纳,获得10
1秒前
曾经寄真发布了新的文献求助10
2秒前
2秒前
zou完成签到,获得积分20
2秒前
4秒前
4秒前
平常安完成签到,获得积分10
4秒前
聪聪great发布了新的文献求助10
4秒前
4秒前
5秒前
西江月完成签到,获得积分10
6秒前
6秒前
小肥要努力变肥完成签到,获得积分10
6秒前
7秒前
苏苏发布了新的文献求助10
7秒前
7秒前
fff发布了新的文献求助10
8秒前
尉迟希望应助妮妮采纳,获得10
8秒前
QUU完成签到,获得积分10
9秒前
9秒前
fzh1234发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
深情不弱发布了新的文献求助10
12秒前
QUU发布了新的文献求助10
12秒前
13秒前
13秒前
英俊的铭应助科研小秦采纳,获得10
13秒前
14秒前
搜集达人应助到江南散步采纳,获得10
14秒前
14秒前
科目三应助xicifish采纳,获得10
15秒前
16秒前
17秒前
雨齐发布了新的文献求助10
17秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443139
求助须知:如何正确求助?哪些是违规求助? 4553050
关于积分的说明 14240730
捐赠科研通 4474652
什么是DOI,文献DOI怎么找? 2452098
邀请新用户注册赠送积分活动 1443042
关于科研通互助平台的介绍 1418705