Subnetwork-Lossless Robust Watermarking for Hostile Theft Attacks in Deep Transfer Learning Models

计算机科学 数字水印 水印 子网 稳健性(进化) 人工智能 学习迁移 深度学习 机器学习 无损压缩 嵌入 利用 计算机安全 数据压缩 图像(数学) 基因 生物化学 化学
作者
Ju Jia,Yueming Wu,Anran Li,Siqi Ma,Yang Liu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:5
标识
DOI:10.1109/tdsc.2022.3194704
摘要

Recently, considerable progress has been made in providing solutions to prevent intellectual property (IP) theft for deep neural networks (DNNs) in ideal classification or recognition scenarios. However, little work has been dedicated to protecting the IP of DNN models in the context of transfer learning. Moreover, knowledge transfer is usually achieved through knowledge distillation or cross-domain distribution adaptation techniques, which will easily lead to the failure of the IP protection due to the high risk of the underlying DNN watermark being corrupted. To address this issue, we propose a subnetwork-lossless robust DNN watermarking (SRDW) framework, which can exploit out-of-distribution (OOD) guidance data augmentation to boost the robustness of watermarking. Specifically, we accurately seek the most rational modification structure (i.e., core subnetwork) using the module risk minimization, and then calculate the contrastive alignment error and the corresponding hash value as the reversible compensation information for the restoration of carrier network. Experimental results show that our scheme has superior robustness against various hostile attacks, such as fine-tuning, pruning, cross-domain matching, and overwriting. In the absence of malicious jamming attacks, the core subnetwork can be recovered without any loss. Besides that, we investigate how embedding watermarks in batch normalization (BN) layers affect the generalization performance of the deep transfer learning models, which reveals that reducing the embedding modifications in BN layers can further promote the robustness to resist hostile attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助chengzhiheng采纳,获得10
刚刚
1秒前
zwb完成签到,获得积分10
1秒前
lynn发布了新的文献求助30
2秒前
欢呼鱼完成签到,获得积分20
3秒前
4秒前
4秒前
Owen应助宁天问采纳,获得10
4秒前
kuang发布了新的文献求助10
4秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
MJSZY完成签到,获得积分10
8秒前
知行合一完成签到 ,获得积分10
8秒前
9秒前
李曾文发布了新的文献求助10
10秒前
huangqian发布了新的文献求助10
10秒前
南拥夏栀完成签到,获得积分10
10秒前
Wang_ZiMo完成签到,获得积分10
11秒前
冷艳水壶发布了新的文献求助10
11秒前
英姑应助畅快的觅风采纳,获得10
11秒前
11秒前
领导范儿应助kk采纳,获得10
13秒前
施宇宙完成签到 ,获得积分10
14秒前
Hollen完成签到 ,获得积分10
14秒前
AC完成签到,获得积分10
15秒前
我啊发布了新的文献求助20
16秒前
16秒前
17秒前
18秒前
19秒前
19秒前
大个应助Kannan采纳,获得10
20秒前
21秒前
明空完成签到,获得积分10
21秒前
21秒前
超级的青荷完成签到 ,获得积分10
22秒前
傻子完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424782
求助须知:如何正确求助?哪些是违规求助? 4539099
关于积分的说明 14165553
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444061
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483