Subnetwork-Lossless Robust Watermarking for Hostile Theft Attacks in Deep Transfer Learning Models

计算机科学 数字水印 水印 子网 稳健性(进化) 人工智能 学习迁移 深度学习 机器学习 无损压缩 嵌入 利用 计算机安全 数据压缩 图像(数学) 基因 生物化学 化学
作者
Ju Jia,Yueming Wu,Anran Li,Siqi Ma,Yang Liu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:5
标识
DOI:10.1109/tdsc.2022.3194704
摘要

Recently, considerable progress has been made in providing solutions to prevent intellectual property (IP) theft for deep neural networks (DNNs) in ideal classification or recognition scenarios. However, little work has been dedicated to protecting the IP of DNN models in the context of transfer learning. Moreover, knowledge transfer is usually achieved through knowledge distillation or cross-domain distribution adaptation techniques, which will easily lead to the failure of the IP protection due to the high risk of the underlying DNN watermark being corrupted. To address this issue, we propose a subnetwork-lossless robust DNN watermarking (SRDW) framework, which can exploit out-of-distribution (OOD) guidance data augmentation to boost the robustness of watermarking. Specifically, we accurately seek the most rational modification structure (i.e., core subnetwork) using the module risk minimization, and then calculate the contrastive alignment error and the corresponding hash value as the reversible compensation information for the restoration of carrier network. Experimental results show that our scheme has superior robustness against various hostile attacks, such as fine-tuning, pruning, cross-domain matching, and overwriting. In the absence of malicious jamming attacks, the core subnetwork can be recovered without any loss. Besides that, we investigate how embedding watermarks in batch normalization (BN) layers affect the generalization performance of the deep transfer learning models, which reveals that reducing the embedding modifications in BN layers can further promote the robustness to resist hostile attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zaro发布了新的文献求助10
1秒前
sun0115完成签到 ,获得积分10
1秒前
1秒前
1秒前
张雷发布了新的文献求助10
1秒前
2秒前
2秒前
所所应助猪猪hero采纳,获得30
3秒前
穆拉迪力完成签到,获得积分10
3秒前
十二发布了新的文献求助10
3秒前
Claudplz完成签到,获得积分10
3秒前
4秒前
4秒前
hilm应助majf采纳,获得30
5秒前
5秒前
KK完成签到,获得积分10
6秒前
6秒前
kk发布了新的文献求助10
7秒前
cc发布了新的文献求助10
8秒前
阿哲发布了新的文献求助10
8秒前
zxt发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
慕青应助七七采纳,获得10
10秒前
JamesPei应助唐帅采纳,获得10
10秒前
桐桐应助qiqi采纳,获得10
11秒前
共享精神应助111采纳,获得20
13秒前
shenlu发布了新的文献求助10
13秒前
14秒前
kikichiu发布了新的文献求助30
15秒前
小红书求接接接接一篇完成签到,获得积分10
15秒前
华仔应助piaopiao采纳,获得10
16秒前
丰富的墨镜完成签到,获得积分10
16秒前
Lisiqi完成签到,获得积分10
16秒前
天玄完成签到,获得积分10
17秒前
ywang发布了新的文献求助10
17秒前
18秒前
李健应助育三杯清栀采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461104
求助须知:如何正确求助?哪些是违规求助? 4566154
关于积分的说明 14303688
捐赠科研通 4491806
什么是DOI,文献DOI怎么找? 2460476
邀请新用户注册赠送积分活动 1449797
关于科研通互助平台的介绍 1425561