Subnetwork-Lossless Robust Watermarking for Hostile Theft Attacks in Deep Transfer Learning Models

计算机科学 数字水印 水印 子网 稳健性(进化) 人工智能 学习迁移 深度学习 机器学习 无损压缩 嵌入 利用 计算机安全 数据压缩 图像(数学) 基因 生物化学 化学
作者
Ju Jia,Yueming Wu,Anran Li,Siqi Ma,Yang Liu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:5
标识
DOI:10.1109/tdsc.2022.3194704
摘要

Recently, considerable progress has been made in providing solutions to prevent intellectual property (IP) theft for deep neural networks (DNNs) in ideal classification or recognition scenarios. However, little work has been dedicated to protecting the IP of DNN models in the context of transfer learning. Moreover, knowledge transfer is usually achieved through knowledge distillation or cross-domain distribution adaptation techniques, which will easily lead to the failure of the IP protection due to the high risk of the underlying DNN watermark being corrupted. To address this issue, we propose a subnetwork-lossless robust DNN watermarking (SRDW) framework, which can exploit out-of-distribution (OOD) guidance data augmentation to boost the robustness of watermarking. Specifically, we accurately seek the most rational modification structure (i.e., core subnetwork) using the module risk minimization, and then calculate the contrastive alignment error and the corresponding hash value as the reversible compensation information for the restoration of carrier network. Experimental results show that our scheme has superior robustness against various hostile attacks, such as fine-tuning, pruning, cross-domain matching, and overwriting. In the absence of malicious jamming attacks, the core subnetwork can be recovered without any loss. Besides that, we investigate how embedding watermarks in batch normalization (BN) layers affect the generalization performance of the deep transfer learning models, which reveals that reducing the embedding modifications in BN layers can further promote the robustness to resist hostile attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欢喜的代容完成签到,获得积分10
1秒前
培乐多完成签到,获得积分10
1秒前
姀姀完成签到,获得积分10
2秒前
宁静致远发布了新的文献求助10
3秒前
warhead完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助drinkliu采纳,获得10
3秒前
wangklvin发布了新的文献求助10
3秒前
贵金属LiLi发布了新的文献求助10
3秒前
优美的觅珍完成签到,获得积分10
3秒前
科研通AI6应助好好书童采纳,获得10
4秒前
政政勇闯世界完成签到,获得积分10
5秒前
5秒前
搜集达人应助asdasd采纳,获得10
5秒前
专一的台灯完成签到,获得积分10
5秒前
5秒前
积极热狗完成签到,获得积分10
5秒前
等待的谷波完成签到 ,获得积分10
5秒前
笨蛋小学生完成签到 ,获得积分10
5秒前
orixero应助式微采纳,获得10
5秒前
xyz完成签到 ,获得积分10
6秒前
小刘同学发布了新的文献求助30
6秒前
6秒前
梯度发布了新的文献求助10
6秒前
风吹草动玉米粒完成签到,获得积分10
7秒前
limz完成签到,获得积分10
7秒前
淡定的安妮完成签到,获得积分10
7秒前
华仔应助kk采纳,获得10
7秒前
zhw297发布了新的文献求助10
7秒前
情怀应助乌力吉采纳,获得10
7秒前
852应助骆驼采纳,获得10
7秒前
8秒前
8秒前
科研通AI6应助summing采纳,获得30
8秒前
8秒前
Flora完成签到,获得积分10
8秒前
8秒前
朱桂林完成签到,获得积分10
9秒前
Shawn完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433734
求助须知:如何正确求助?哪些是违规求助? 4546134
关于积分的说明 14201102
捐赠科研通 4466059
什么是DOI,文献DOI怎么找? 2447781
邀请新用户注册赠送积分活动 1438873
关于科研通互助平台的介绍 1415835