Subnetwork-Lossless Robust Watermarking for Hostile Theft Attacks in Deep Transfer Learning Models

计算机科学 数字水印 水印 子网 稳健性(进化) 人工智能 学习迁移 深度学习 机器学习 无损压缩 嵌入 利用 计算机安全 数据压缩 图像(数学) 生物化学 化学 基因
作者
Ju Jia,Yueming Wu,Anran Li,Siqi Ma,Yang Liu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:: 1-16 被引量:5
标识
DOI:10.1109/tdsc.2022.3194704
摘要

Recently, considerable progress has been made in providing solutions to prevent intellectual property (IP) theft for deep neural networks (DNNs) in ideal classification or recognition scenarios. However, little work has been dedicated to protecting the IP of DNN models in the context of transfer learning. Moreover, knowledge transfer is usually achieved through knowledge distillation or cross-domain distribution adaptation techniques, which will easily lead to the failure of the IP protection due to the high risk of the underlying DNN watermark being corrupted. To address this issue, we propose a subnetwork-lossless robust DNN watermarking (SRDW) framework, which can exploit out-of-distribution (OOD) guidance data augmentation to boost the robustness of watermarking. Specifically, we accurately seek the most rational modification structure (i.e., core subnetwork) using the module risk minimization, and then calculate the contrastive alignment error and the corresponding hash value as the reversible compensation information for the restoration of carrier network. Experimental results show that our scheme has superior robustness against various hostile attacks, such as fine-tuning, pruning, cross-domain matching, and overwriting. In the absence of malicious jamming attacks, the core subnetwork can be recovered without any loss. Besides that, we investigate how embedding watermarks in batch normalization (BN) layers affect the generalization performance of the deep transfer learning models, which reveals that reducing the embedding modifications in BN layers can further promote the robustness to resist hostile attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落寞凌波应助zzyyy采纳,获得10
1秒前
athruncx发布了新的文献求助10
2秒前
2秒前
3秒前
JIASHOUSHOU发布了新的文献求助10
4秒前
lucy完成签到,获得积分10
4秒前
呦呦鹿鸣完成签到,获得积分10
6秒前
落寞凌波应助七一琦采纳,获得30
8秒前
科研狗-加班族完成签到,获得积分10
9秒前
谢佳霖完成签到,获得积分20
9秒前
chen完成签到,获得积分10
9秒前
Akim应助Lesile采纳,获得10
10秒前
FashionBoy应助Steven采纳,获得10
11秒前
12秒前
赘婿应助科研小白菜采纳,获得10
14秒前
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
Liufgui应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
Newt应助科研通管家采纳,获得10
15秒前
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
15秒前
Newt应助科研通管家采纳,获得18
15秒前
15秒前
冷酷飞飞应助我们仨采纳,获得10
16秒前
bronze完成签到,获得积分10
16秒前
Sophist发布了新的文献求助10
18秒前
MXene完成签到,获得积分0
18秒前
GWZZ完成签到,获得积分10
18秒前
所所应助你吼采纳,获得10
19秒前
re发布了新的文献求助10
20秒前
脑洞疼应助Lesile采纳,获得10
24秒前
充电宝应助Dasiliy采纳,获得10
24秒前
希望天下0贩的0应助Steven采纳,获得10
24秒前
MHY完成签到,获得积分10
24秒前
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998925
求助须知:如何正确求助?哪些是违规求助? 3538424
关于积分的说明 11274205
捐赠科研通 3277345
什么是DOI,文献DOI怎么找? 1807518
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075