Subnetwork-Lossless Robust Watermarking for Hostile Theft Attacks in Deep Transfer Learning Models

计算机科学 数字水印 水印 子网 稳健性(进化) 人工智能 学习迁移 深度学习 机器学习 无损压缩 嵌入 利用 计算机安全 数据压缩 图像(数学) 基因 生物化学 化学
作者
Ju Jia,Yueming Wu,Anran Li,Siqi Ma,Yang Liu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:5
标识
DOI:10.1109/tdsc.2022.3194704
摘要

Recently, considerable progress has been made in providing solutions to prevent intellectual property (IP) theft for deep neural networks (DNNs) in ideal classification or recognition scenarios. However, little work has been dedicated to protecting the IP of DNN models in the context of transfer learning. Moreover, knowledge transfer is usually achieved through knowledge distillation or cross-domain distribution adaptation techniques, which will easily lead to the failure of the IP protection due to the high risk of the underlying DNN watermark being corrupted. To address this issue, we propose a subnetwork-lossless robust DNN watermarking (SRDW) framework, which can exploit out-of-distribution (OOD) guidance data augmentation to boost the robustness of watermarking. Specifically, we accurately seek the most rational modification structure (i.e., core subnetwork) using the module risk minimization, and then calculate the contrastive alignment error and the corresponding hash value as the reversible compensation information for the restoration of carrier network. Experimental results show that our scheme has superior robustness against various hostile attacks, such as fine-tuning, pruning, cross-domain matching, and overwriting. In the absence of malicious jamming attacks, the core subnetwork can be recovered without any loss. Besides that, we investigate how embedding watermarks in batch normalization (BN) layers affect the generalization performance of the deep transfer learning models, which reveals that reducing the embedding modifications in BN layers can further promote the robustness to resist hostile attacks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助南风不竞采纳,获得10
刚刚
爆米花应助好奇宝宝采纳,获得10
刚刚
脑洞疼应助无限符号采纳,获得10
刚刚
天选之子完成签到,获得积分10
2秒前
2秒前
你认为233完成签到,获得积分10
3秒前
123456完成签到,获得积分10
4秒前
4秒前
BowieHuang应助老北京采纳,获得10
5秒前
丘比特应助老北京采纳,获得10
5秒前
5秒前
5秒前
Jasper应助随影采纳,获得10
6秒前
jiunuan应助天才包采纳,获得30
7秒前
7秒前
深情安青应助无聊的新波采纳,获得10
7秒前
希遇安发布了新的文献求助10
7秒前
77qoq完成签到 ,获得积分20
8秒前
KUN发布了新的文献求助10
8秒前
wanx-完成签到,获得积分20
8秒前
桐桐应助Mtoc采纳,获得10
9秒前
无花果应助和谐的饼干采纳,获得50
9秒前
英俊的铭应助deletelzr采纳,获得10
9秒前
9秒前
完美世界应助racill采纳,获得10
9秒前
10秒前
abu完成签到,获得积分10
10秒前
10秒前
无限符号完成签到,获得积分10
10秒前
科研通AI6应助zhenqiqin采纳,获得10
11秒前
好奇宝宝发布了新的文献求助10
11秒前
wanx-发布了新的文献求助80
12秒前
汉堡包应助渊_采纳,获得10
13秒前
13秒前
jianlong0206完成签到 ,获得积分10
13秒前
默默犀牛完成签到 ,获得积分10
13秒前
清爽安青发布了新的文献求助10
13秒前
13秒前
14秒前
南风不竞发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937