亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Deterministic Policy Gradient to Minimize the Age of Information in Cellular V2X Communications

数学优化 强化学习 马尔可夫决策过程 计算机科学 维数之咒 调度(生产过程) 最优化问题 启发式 拉格朗日松弛 马尔可夫过程 数学 人工智能 统计
作者
Zoubeir Mlika,Soumaya Cherkaoui
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 23597-23612 被引量:13
标识
DOI:10.1109/tits.2022.3190799
摘要

This paper studies the problem of minimizing the age of information (AoI) in cellular vehicle-to-everything communications. To provide minimal AoI and high reliability for vehicles' safety information, NOMA is exploited. We reformulate a resource allocation problem that involves half-duplex transceiver selection, broadcast coverage optimization, power allocation, and resource block scheduling. First, to obtain the optimal solution, we formulate the problem as a mixed-integer nonlinear programming problem and then study its NP-hardness. The NP-hardness result motivates us to design simple solutions. Consequently, we model the problem as a single-agent Markov decision process to solve the problem efficiently using fingerprint deep reinforcement learning techniques such as deep-Q-network (DQN) methods. Nevertheless, applying DQN is not straightforward due to the curse of dimensionality implied by the large and mixed action space that contains discrete and continuous optimization decisions. Therefore, to solve this mixed discrete/continuous problem efficiently, simply and elegantly, we propose a decomposition technique that consists of first solving the discrete subproblem using a matching algorithm based on state-of-the-art stable roommate matching and then solving the continuous subproblem using DRL algorithm that is based on deep deterministic policy gradient DDPG. We validate our proposed method through Monte Carlo simulations where we show that the decomposed matching and DRL algorithm successfully minimizes the AoI and achieves almost 66% performance gain compared to the best benchmarks for various vehicles' speeds, transmission power, or packet sizes. Further, we prove the existence of an optimal value of broadcast coverage at which the learning algorithm provides the optimal AoI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Li发布了新的文献求助10
5秒前
云初应助天天呼的海角采纳,获得20
8秒前
正直的友容完成签到,获得积分10
9秒前
9秒前
李健应助XIA采纳,获得10
12秒前
从容芮完成签到,获得积分0
15秒前
欣慰外套完成签到 ,获得积分10
17秒前
17秒前
19秒前
dreamer完成签到 ,获得积分10
20秒前
23秒前
zxy发布了新的文献求助10
24秒前
不被定义的风完成签到,获得积分10
25秒前
26秒前
lanmi完成签到,获得积分10
31秒前
Akim应助笨笨的元风采纳,获得10
32秒前
清逸发布了新的文献求助10
32秒前
XIA发布了新的文献求助10
32秒前
六个核桃完成签到,获得积分10
32秒前
一个绝望的文盲x完成签到,获得积分10
38秒前
无花果应助zxy采纳,获得10
41秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
44秒前
zxy完成签到,获得积分20
49秒前
王火火完成签到 ,获得积分10
54秒前
LYQ完成签到,获得积分10
57秒前
57秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
快乐的晗发布了新的文献求助10
1分钟前
还好还好发布了新的文献求助10
1分钟前
猕猴桃发布了新的文献求助10
1分钟前
虚拟的清炎完成签到 ,获得积分10
1分钟前
天师神算完成签到,获得积分10
1分钟前
丘比特应助三重积分咖啡采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548989
求助须知:如何正确求助?哪些是违规求助? 4634415
关于积分的说明 14634428
捐赠科研通 4575749
什么是DOI,文献DOI怎么找? 2509284
邀请新用户注册赠送积分活动 1485264
关于科研通互助平台的介绍 1456346