亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Deterministic Policy Gradient to Minimize the Age of Information in Cellular V2X Communications

数学优化 强化学习 马尔可夫决策过程 计算机科学 维数之咒 调度(生产过程) 最优化问题 启发式 拉格朗日松弛 马尔可夫过程 数学 人工智能 统计
作者
Zoubeir Mlika,Soumaya Cherkaoui
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 23597-23612 被引量:13
标识
DOI:10.1109/tits.2022.3190799
摘要

This paper studies the problem of minimizing the age of information (AoI) in cellular vehicle-to-everything communications. To provide minimal AoI and high reliability for vehicles' safety information, NOMA is exploited. We reformulate a resource allocation problem that involves half-duplex transceiver selection, broadcast coverage optimization, power allocation, and resource block scheduling. First, to obtain the optimal solution, we formulate the problem as a mixed-integer nonlinear programming problem and then study its NP-hardness. The NP-hardness result motivates us to design simple solutions. Consequently, we model the problem as a single-agent Markov decision process to solve the problem efficiently using fingerprint deep reinforcement learning techniques such as deep-Q-network (DQN) methods. Nevertheless, applying DQN is not straightforward due to the curse of dimensionality implied by the large and mixed action space that contains discrete and continuous optimization decisions. Therefore, to solve this mixed discrete/continuous problem efficiently, simply and elegantly, we propose a decomposition technique that consists of first solving the discrete subproblem using a matching algorithm based on state-of-the-art stable roommate matching and then solving the continuous subproblem using DRL algorithm that is based on deep deterministic policy gradient DDPG. We validate our proposed method through Monte Carlo simulations where we show that the decomposed matching and DRL algorithm successfully minimizes the AoI and achieves almost 66% performance gain compared to the best benchmarks for various vehicles' speeds, transmission power, or packet sizes. Further, we prove the existence of an optimal value of broadcast coverage at which the learning algorithm provides the optimal AoI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
jobs完成签到 ,获得积分10
8秒前
充电宝应助荷兰香猪采纳,获得10
8秒前
汉堡包应助爱睡觉采纳,获得10
16秒前
gxmu6322完成签到,获得积分10
17秒前
17秒前
bkagyin应助小巧的诗双采纳,获得10
18秒前
wu完成签到,获得积分10
22秒前
在水一方应助ZmZhu采纳,获得10
23秒前
无花果应助科研通管家采纳,获得10
25秒前
25秒前
星辰大海应助科研通管家采纳,获得10
26秒前
26秒前
唐泽雪穗应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
思源应助ceeray23采纳,获得20
27秒前
伊笙完成签到 ,获得积分0
28秒前
30秒前
31秒前
Ice发布了新的文献求助10
31秒前
Eric_Li发布了新的文献求助20
34秒前
郝誉完成签到,获得积分10
34秒前
朴素的书琴完成签到,获得积分10
36秒前
兴奋的若菱完成签到 ,获得积分10
36秒前
lx840518完成签到 ,获得积分10
38秒前
Ava应助Ice采纳,获得20
39秒前
完美世界应助anzai采纳,获得10
39秒前
聪慧冰淇淋完成签到 ,获得积分10
52秒前
55秒前
winew发布了新的文献求助30
57秒前
张ZWY完成签到 ,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
liubai发布了新的文献求助10
1分钟前
冷酷愚志完成签到,获得积分10
1分钟前
1分钟前
1分钟前
anzai发布了新的文献求助10
1分钟前
zyz发布了新的文献求助20
1分钟前
hh发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5042285
求助须知:如何正确求助?哪些是违规求助? 4272864
关于积分的说明 13321718
捐赠科研通 4085525
什么是DOI,文献DOI怎么找? 2235208
邀请新用户注册赠送积分活动 1242826
关于科研通互助平台的介绍 1169732