Deep Deterministic Policy Gradient to Minimize the Age of Information in Cellular V2X Communications

数学优化 强化学习 马尔可夫决策过程 计算机科学 维数之咒 调度(生产过程) 最优化问题 启发式 拉格朗日松弛 马尔可夫过程 数学 人工智能 统计
作者
Zoubeir Mlika,Soumaya Cherkaoui
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 23597-23612 被引量:13
标识
DOI:10.1109/tits.2022.3190799
摘要

This paper studies the problem of minimizing the age of information (AoI) in cellular vehicle-to-everything communications. To provide minimal AoI and high reliability for vehicles' safety information, NOMA is exploited. We reformulate a resource allocation problem that involves half-duplex transceiver selection, broadcast coverage optimization, power allocation, and resource block scheduling. First, to obtain the optimal solution, we formulate the problem as a mixed-integer nonlinear programming problem and then study its NP-hardness. The NP-hardness result motivates us to design simple solutions. Consequently, we model the problem as a single-agent Markov decision process to solve the problem efficiently using fingerprint deep reinforcement learning techniques such as deep-Q-network (DQN) methods. Nevertheless, applying DQN is not straightforward due to the curse of dimensionality implied by the large and mixed action space that contains discrete and continuous optimization decisions. Therefore, to solve this mixed discrete/continuous problem efficiently, simply and elegantly, we propose a decomposition technique that consists of first solving the discrete subproblem using a matching algorithm based on state-of-the-art stable roommate matching and then solving the continuous subproblem using DRL algorithm that is based on deep deterministic policy gradient DDPG. We validate our proposed method through Monte Carlo simulations where we show that the decomposed matching and DRL algorithm successfully minimizes the AoI and achieves almost 66% performance gain compared to the best benchmarks for various vehicles' speeds, transmission power, or packet sizes. Further, we prove the existence of an optimal value of broadcast coverage at which the learning algorithm provides the optimal AoI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
baekhyun完成签到,获得积分20
2秒前
wtt完成签到 ,获得积分10
3秒前
上官若男应助坦率的灭龙采纳,获得10
4秒前
温眼张发布了新的文献求助10
5秒前
华仔应助wpzzpw采纳,获得10
5秒前
simple完成签到,获得积分10
5秒前
huahua发布了新的文献求助10
6秒前
baekhyun发布了新的文献求助10
6秒前
不配.应助漂亮的访冬采纳,获得10
6秒前
8秒前
9秒前
搜集达人应助gaoww采纳,获得10
9秒前
Www发布了新的文献求助10
10秒前
栀虞完成签到,获得积分20
12秒前
甜蜜谷蕊应助博修采纳,获得10
13秒前
Lilllllly完成签到,获得积分10
13秒前
狂野的心情完成签到,获得积分10
13秒前
therealwang发布了新的文献求助10
13秒前
娃哈哈完成签到,获得积分10
14秒前
rayce发布了新的文献求助10
15秒前
15秒前
希望天下0贩的0应助huahua采纳,获得10
17秒前
cqbrain123完成签到,获得积分10
18秒前
笑看人生应助Bruce采纳,获得10
19秒前
斯文败类应助椿上春树采纳,获得10
20秒前
结实智宸完成签到,获得积分10
21秒前
23秒前
24秒前
24秒前
李健的粉丝团团长应助arui采纳,获得10
24秒前
我是老大应助开心友儿采纳,获得10
26秒前
悦耳梦松完成签到 ,获得积分10
26秒前
YuanbinMao应助小全采纳,获得10
27秒前
therealwang完成签到,获得积分10
27秒前
zzz发布了新的文献求助10
28秒前
陆三岁完成签到,获得积分10
28秒前
淡定成风完成签到,获得积分10
28秒前
鹿鹿发布了新的文献求助10
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Radon as a natural tracer to study transport processes in a karst system. An example in the Swiss Jura 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3225810
求助须知:如何正确求助?哪些是违规求助? 2874588
关于积分的说明 8186816
捐赠科研通 2541636
什么是DOI,文献DOI怎么找? 1372245
科研通“疑难数据库(出版商)”最低求助积分说明 646458
邀请新用户注册赠送积分活动 620753