重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Deep Deterministic Policy Gradient to Minimize the Age of Information in Cellular V2X Communications

数学优化 强化学习 马尔可夫决策过程 计算机科学 维数之咒 调度(生产过程) 最优化问题 启发式 拉格朗日松弛 马尔可夫过程 数学 人工智能 统计
作者
Zoubeir Mlika,Soumaya Cherkaoui
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 23597-23612 被引量:13
标识
DOI:10.1109/tits.2022.3190799
摘要

This paper studies the problem of minimizing the age of information (AoI) in cellular vehicle-to-everything communications. To provide minimal AoI and high reliability for vehicles' safety information, NOMA is exploited. We reformulate a resource allocation problem that involves half-duplex transceiver selection, broadcast coverage optimization, power allocation, and resource block scheduling. First, to obtain the optimal solution, we formulate the problem as a mixed-integer nonlinear programming problem and then study its NP-hardness. The NP-hardness result motivates us to design simple solutions. Consequently, we model the problem as a single-agent Markov decision process to solve the problem efficiently using fingerprint deep reinforcement learning techniques such as deep-Q-network (DQN) methods. Nevertheless, applying DQN is not straightforward due to the curse of dimensionality implied by the large and mixed action space that contains discrete and continuous optimization decisions. Therefore, to solve this mixed discrete/continuous problem efficiently, simply and elegantly, we propose a decomposition technique that consists of first solving the discrete subproblem using a matching algorithm based on state-of-the-art stable roommate matching and then solving the continuous subproblem using DRL algorithm that is based on deep deterministic policy gradient DDPG. We validate our proposed method through Monte Carlo simulations where we show that the decomposed matching and DRL algorithm successfully minimizes the AoI and achieves almost 66% performance gain compared to the best benchmarks for various vehicles' speeds, transmission power, or packet sizes. Further, we prove the existence of an optimal value of broadcast coverage at which the learning algorithm provides the optimal AoI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
ZIwang发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
NexusExplorer应助hhhh采纳,获得10
2秒前
隐形曼青应助liuhaha采纳,获得10
2秒前
冷静紫菱完成签到,获得积分10
3秒前
3秒前
领导范儿应助Lsm13141516采纳,获得10
3秒前
新新新新新发顶刊完成签到 ,获得积分10
3秒前
LYNN发布了新的文献求助10
4秒前
花开富贵发布了新的文献求助10
4秒前
5秒前
聪明帅哥发布了新的文献求助10
5秒前
5秒前
5秒前
Hello应助倩倩采纳,获得10
6秒前
gj2221423发布了新的文献求助10
6秒前
Hello应助犹豫的君浩采纳,获得10
6秒前
orixero应助牧林听风采纳,获得10
7秒前
7秒前
7秒前
JL发布了新的文献求助10
7秒前
充电宝应助litiantian采纳,获得10
7秒前
郝丽娜发布了新的文献求助10
8秒前
侧耳倾听完成签到,获得积分10
9秒前
科研通AI6应助YH采纳,获得30
9秒前
失眠雨发布了新的文献求助10
9秒前
win发布了新的文献求助10
9秒前
虚心碧发布了新的文献求助10
10秒前
科研通AI6应助LYNN采纳,获得10
10秒前
可爱的函函应助yyy采纳,获得10
10秒前
11关闭了11文献求助
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467266
求助须知:如何正确求助?哪些是违规求助? 4570917
关于积分的说明 14327656
捐赠科研通 4497524
什么是DOI,文献DOI怎么找? 2463982
邀请新用户注册赠送积分活动 1452857
关于科研通互助平台的介绍 1427654