催化作用
双原子分子
空位缺陷
硼
分子
材料科学
化学
无机化学
结晶学
有机化学
作者
Ru Feng,Hanqing Yin,Fuhao Jin,Wei Niu,Wanting Zhang,Jingquan Liu,Aijun Du,Wenrong Yang,Zhen Liu
出处
期刊:Small
[Wiley]
日期:2023-03-28
卷期号:19 (28)
被引量:24
标识
DOI:10.1002/smll.202301627
摘要
The ambient electrochemical N2 reduction reaction (NRR) is a future approach for the artificial NH3 synthesis to overcome the problems of high-energy consumption and environmental pollution by Haber-Bosch technology. However, the challenge of N2 activation on a catalyst surface and the competitive hydrogen evolution reaction make the current NRR unsatisfied. Herein, this work demonstrates that NbB2 nanoflakes (NFs) exhibit excellent selectivity and durability in NRR, which produces NH3 with a production rate of 30.5 µg h-1 mgcat-1 and a super-high Faraday efficiency (FE) of 40.2%. The high-selective NH3 production is attributed to the large amount of active B vacancies on the surface of NbB2 NFs. Density functional theory calculations suggest that the multiple atomic adsorption of N2 on both unsaturated Nb and B atoms results in a significantly stretched N2 molecule. The weakened NN triple bonds are easier to be broken for a biased NH3 production. The diatomic catalysis is a future approach for NRR as it shows a special N2 adsorption mode that can be well engineered.
科研通智能强力驱动
Strongly Powered by AbleSci AI