An intelligent diagnostic framework based on digital twins and partial transfer learning: methodology and industrial application

学习迁移 计算机科学 传输(计算) 人工智能 并行计算
作者
Mehdi Saman Azari,Luca Ricci,Stefania Santini,Francesco Flammini
标识
DOI:10.36227/techrxiv.172263061.16209264/v1
摘要

Within Industry 4.0, efficient fault diagnosis plays a pivotal role in predictive maintenance of industrial machinery. However, the challenge lies in the significant domain shift between the source (training) and target (testing) domains, which hampers the application of machine learning in engineering practice. Several approaches based on transfer learning have been proposed to cope with the lack of training data in the target domain and the related domain adaptation challenges. Those approaches leverage the knowledge from similar source domains, including related real-world applications or lab machines. Unfortunately, access to sufficient faulty data from such source domains is often restricted due to insufficient history of faults in real machines, as well as difficulties to get labeled datasets from lab machines, which is time-consuming and sometimes unfeasible. To tackle those issues, this paper proposes a novel diagnostic framework integrating digital twins and transfer learning to mitigate the limitations posed by insufficient training datasets and domain discrepancies. By leveraging digital twins, training datasets are generated as the source domain, while introducing a model update strategy based on parameter sensitivity analysis to enhance adaptability. In addition, the partial transfer diagnostic model, incorporating a double-layer attention mechanism, enables to cope with data distribution discrepancies between digital twins and real machines, as well as inconsistencies in label spaces across domains. The diagnostic framework is validated on an industrial rotating machine case study, where faulty behaviors originated by defects on the inner race, outer race, and ball of the bearing are considered. Real data from two publicly available datasets are leveraged. The results of the experimental analysis have been compared with state-of-the-art methodologies: the proposed approach is able to improve the diagnostic accuracy by over 11% in the specific case study. Therefore, the approach can effectively increase equipment reliability, optimize maintenance, and enhance operational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高兴微笑完成签到,获得积分10
刚刚
刚刚
开朗筮发布了新的文献求助10
1秒前
阿丹发布了新的文献求助10
1秒前
轻松的悟空完成签到,获得积分10
1秒前
浮雨微清完成签到,获得积分10
1秒前
2秒前
tapekit完成签到,获得积分10
2秒前
温良和风完成签到,获得积分10
3秒前
之之完成签到,获得积分10
3秒前
堪中恶完成签到,获得积分10
3秒前
林好事发布了新的文献求助10
3秒前
3秒前
spc68应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
zgrmws应助科研通管家采纳,获得20
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
烟花应助豆豆突采纳,获得10
4秒前
spc68应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助上官听白采纳,获得100
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
慕青应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得30
4秒前
慕青应助科研通管家采纳,获得30
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
三愿完成签到 ,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659205
求助须知:如何正确求助?哪些是违规求助? 4827677
关于积分的说明 15085891
捐赠科研通 4817891
什么是DOI,文献DOI怎么找? 2578393
邀请新用户注册赠送积分活动 1533047
关于科研通互助平台的介绍 1491746