An intelligent diagnostic framework based on digital twins and partial transfer learning: methodology and industrial application

学习迁移 计算机科学 传输(计算) 人工智能 并行计算
作者
Mehdi Saman Azari,Luca Ricci,Stefania Santini,Francesco Flammini
标识
DOI:10.36227/techrxiv.172263061.16209264/v1
摘要

Within Industry 4.0, efficient fault diagnosis plays a pivotal role in predictive maintenance of industrial machinery. However, the challenge lies in the significant domain shift between the source (training) and target (testing) domains, which hampers the application of machine learning in engineering practice. Several approaches based on transfer learning have been proposed to cope with the lack of training data in the target domain and the related domain adaptation challenges. Those approaches leverage the knowledge from similar source domains, including related real-world applications or lab machines. Unfortunately, access to sufficient faulty data from such source domains is often restricted due to insufficient history of faults in real machines, as well as difficulties to get labeled datasets from lab machines, which is time-consuming and sometimes unfeasible. To tackle those issues, this paper proposes a novel diagnostic framework integrating digital twins and transfer learning to mitigate the limitations posed by insufficient training datasets and domain discrepancies. By leveraging digital twins, training datasets are generated as the source domain, while introducing a model update strategy based on parameter sensitivity analysis to enhance adaptability. In addition, the partial transfer diagnostic model, incorporating a double-layer attention mechanism, enables to cope with data distribution discrepancies between digital twins and real machines, as well as inconsistencies in label spaces across domains. The diagnostic framework is validated on an industrial rotating machine case study, where faulty behaviors originated by defects on the inner race, outer race, and ball of the bearing are considered. Real data from two publicly available datasets are leveraged. The results of the experimental analysis have been compared with state-of-the-art methodologies: the proposed approach is able to improve the diagnostic accuracy by over 11% in the specific case study. Therefore, the approach can effectively increase equipment reliability, optimize maintenance, and enhance operational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KaleemUllah发布了新的文献求助10
1秒前
我是老大应助王昊楠采纳,获得10
2秒前
Maestro_S发布了新的文献求助10
2秒前
鱼鱼发布了新的文献求助10
2秒前
TCMGG完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
Apple发布了新的文献求助10
5秒前
5秒前
搬工的砖人完成签到 ,获得积分10
6秒前
Darling发布了新的文献求助10
8秒前
自信的高山完成签到,获得积分10
8秒前
Liuyan应助yan采纳,获得10
8秒前
Akim应助楼下太吵了采纳,获得10
9秒前
nancylan发布了新的文献求助10
9秒前
Jasper应助OPV采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
11秒前
黄桃完成签到,获得积分10
11秒前
蓝冰完成签到,获得积分10
12秒前
日安完成签到 ,获得积分10
14秒前
14秒前
14秒前
Zyk完成签到,获得积分10
14秒前
15秒前
王昊楠发布了新的文献求助10
16秒前
所所应助Yee采纳,获得10
16秒前
lsblb发布了新的文献求助10
16秒前
笑点低人英完成签到 ,获得积分10
18秒前
zzy完成签到,获得积分10
18秒前
ziye关注了科研通微信公众号
19秒前
瘦瘦从梦发布了新的文献求助10
20秒前
汉堡包应助Apple采纳,获得30
21秒前
量子星尘发布了新的文献求助10
23秒前
文欣发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735163
求助须知:如何正确求助?哪些是违规求助? 5358806
关于积分的说明 15328740
捐赠科研通 4879501
什么是DOI,文献DOI怎么找? 2621999
邀请新用户注册赠送积分活动 1571173
关于科研通互助平台的介绍 1527966