An intelligent diagnostic framework based on digital twins and partial transfer learning: methodology and industrial application

学习迁移 计算机科学 传输(计算) 人工智能 并行计算
作者
Mehdi Saman Azari,Luca Ricci,Stefania Santini,Francesco Flammini
标识
DOI:10.36227/techrxiv.172263061.16209264/v1
摘要

Within Industry 4.0, efficient fault diagnosis plays a pivotal role in predictive maintenance of industrial machinery. However, the challenge lies in the significant domain shift between the source (training) and target (testing) domains, which hampers the application of machine learning in engineering practice. Several approaches based on transfer learning have been proposed to cope with the lack of training data in the target domain and the related domain adaptation challenges. Those approaches leverage the knowledge from similar source domains, including related real-world applications or lab machines. Unfortunately, access to sufficient faulty data from such source domains is often restricted due to insufficient history of faults in real machines, as well as difficulties to get labeled datasets from lab machines, which is time-consuming and sometimes unfeasible. To tackle those issues, this paper proposes a novel diagnostic framework integrating digital twins and transfer learning to mitigate the limitations posed by insufficient training datasets and domain discrepancies. By leveraging digital twins, training datasets are generated as the source domain, while introducing a model update strategy based on parameter sensitivity analysis to enhance adaptability. In addition, the partial transfer diagnostic model, incorporating a double-layer attention mechanism, enables to cope with data distribution discrepancies between digital twins and real machines, as well as inconsistencies in label spaces across domains. The diagnostic framework is validated on an industrial rotating machine case study, where faulty behaviors originated by defects on the inner race, outer race, and ball of the bearing are considered. Real data from two publicly available datasets are leveraged. The results of the experimental analysis have been compared with state-of-the-art methodologies: the proposed approach is able to improve the diagnostic accuracy by over 11% in the specific case study. Therefore, the approach can effectively increase equipment reliability, optimize maintenance, and enhance operational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助科研通管家采纳,获得50
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
自信晓旋完成签到,获得积分10
1秒前
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
wlscj应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
俊秀的半雪完成签到,获得积分10
2秒前
zahngyacheng发布了新的文献求助10
3秒前
ltt完成签到,获得积分10
3秒前
sun发布了新的文献求助10
3秒前
自觉紫安发布了新的文献求助10
4秒前
4秒前
4秒前
研友_R2D2完成签到,获得积分10
6秒前
konya发布了新的文献求助10
7秒前
吴念完成签到,获得积分10
7秒前
MMM完成签到,获得积分10
8秒前
皮凡发布了新的文献求助10
8秒前
9秒前
w0304hf发布了新的文献求助10
9秒前
lili发布了新的文献求助10
9秒前
无花果应助将个烂就采纳,获得10
9秒前
45发布了新的文献求助30
11秒前
Nana发布了新的文献求助10
11秒前
11秒前
yufancy02发布了新的文献求助10
14秒前
科研通AI6应助鱼鱼鱼采纳,获得10
14秒前
酷波er应助难过含烟采纳,获得10
14秒前
UHPC完成签到,获得积分10
15秒前
忽而今夏发布了新的文献求助30
15秒前
16秒前
16秒前
fm发布了新的文献求助10
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930