清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An intelligent diagnostic framework based on digital twins and partial transfer learning: methodology and industrial application

学习迁移 计算机科学 传输(计算) 人工智能 并行计算
作者
Mehdi Saman Azari,Luca Ricci,Stefania Santini,Francesco Flammini
标识
DOI:10.36227/techrxiv.172263061.16209264/v1
摘要

Within Industry 4.0, efficient fault diagnosis plays a pivotal role in predictive maintenance of industrial machinery. However, the challenge lies in the significant domain shift between the source (training) and target (testing) domains, which hampers the application of machine learning in engineering practice. Several approaches based on transfer learning have been proposed to cope with the lack of training data in the target domain and the related domain adaptation challenges. Those approaches leverage the knowledge from similar source domains, including related real-world applications or lab machines. Unfortunately, access to sufficient faulty data from such source domains is often restricted due to insufficient history of faults in real machines, as well as difficulties to get labeled datasets from lab machines, which is time-consuming and sometimes unfeasible. To tackle those issues, this paper proposes a novel diagnostic framework integrating digital twins and transfer learning to mitigate the limitations posed by insufficient training datasets and domain discrepancies. By leveraging digital twins, training datasets are generated as the source domain, while introducing a model update strategy based on parameter sensitivity analysis to enhance adaptability. In addition, the partial transfer diagnostic model, incorporating a double-layer attention mechanism, enables to cope with data distribution discrepancies between digital twins and real machines, as well as inconsistencies in label spaces across domains. The diagnostic framework is validated on an industrial rotating machine case study, where faulty behaviors originated by defects on the inner race, outer race, and ball of the bearing are considered. Real data from two publicly available datasets are leveraged. The results of the experimental analysis have been compared with state-of-the-art methodologies: the proposed approach is able to improve the diagnostic accuracy by over 11% in the specific case study. Therefore, the approach can effectively increase equipment reliability, optimize maintenance, and enhance operational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助科研通管家采纳,获得10
12秒前
刘玲完成签到 ,获得积分10
32秒前
jingjili完成签到,获得积分0
1分钟前
1分钟前
jingjili发布了新的文献求助10
1分钟前
拓跋雨梅完成签到 ,获得积分0
2分钟前
郭星星完成签到,获得积分10
2分钟前
个性仙人掌完成签到 ,获得积分10
2分钟前
Echoheart完成签到,获得积分10
2分钟前
咯咯咯完成签到 ,获得积分10
2分钟前
淡淡醉波wuliao完成签到 ,获得积分10
3分钟前
even完成签到 ,获得积分10
3分钟前
研友_Z119gZ完成签到 ,获得积分10
3分钟前
沙海沉戈完成签到,获得积分0
3分钟前
Shandongdaxiu完成签到 ,获得积分10
4分钟前
如意的馒头完成签到 ,获得积分10
4分钟前
kenchilie完成签到 ,获得积分10
4分钟前
Summer_Xia完成签到 ,获得积分10
7分钟前
8分钟前
小郭发布了新的文献求助20
8分钟前
不安青牛应助偷西瓜的猹采纳,获得10
8分钟前
8分钟前
小郭发布了新的文献求助10
8分钟前
吉吉完成签到 ,获得积分10
8分钟前
8分钟前
小马甲应助小郭采纳,获得10
9分钟前
apathetic完成签到,获得积分10
9分钟前
9分钟前
妮子拉完成签到,获得积分10
9分钟前
遥感小虫发布了新的文献求助10
9分钟前
9分钟前
紫熊完成签到,获得积分10
10分钟前
10分钟前
LIVE完成签到,获得积分10
10分钟前
10分钟前
Jenny完成签到,获得积分10
11分钟前
刘刘完成签到 ,获得积分10
11分钟前
结实的忆枫完成签到,获得积分10
11分钟前
寻道图强应助结实的忆枫采纳,获得30
12分钟前
amar完成签到 ,获得积分0
12分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142