Computational Exploration of Adsorption-Based Hydrogen Storage in Mg-Alkoxide Functionalized Covalent-Organic Frameworks (COFs): Force-Field and Machine Learning Models

材料科学 醇盐 吸附 共价键 氢气储存 领域(数学) 纳米技术 化学工程 有机化学 复合材料 工程类 催化作用 化学 数学 合金 纯数学
作者
Yu Chen,Guobin Zhao,Sunghyun Yoon,Parsa Habibi,Chang Seop Hong,Song Li,Othonas A. Moultos,Poulumi Dey,Thijs J. H. Vlugt,Yongchul G. Chung
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (45): 61995-62009
标识
DOI:10.1021/acsami.4c11953
摘要

Hydrogen is a clean-burning fuel that can be converted to other forms. of energy without generating any greenhouse gases. Currently, hydrogen is stored either by compression to high pressure (>700 bar) or cryogenic cooling to liquid form (<23 K). Therefore, it is essential to develop safe, reliable, and energy-efficient storage technology that can store hydrogen at lower pressures and temperatures. In this work, we systematically designed 2902 Mg-alkoxide-functionalized covalent-organic frameworks (COFs) and performed high-throughput (HT) computational screening for hydrogen storage applications at 111, 231, and 296 K. To accurately model the interaction between Mg-alkoxide sites and molecular hydrogen, we performed MP2 calculations to compute the hydrogen binding energy for different types of functionalized models, and the data were subsequently used to fit modified-Morse force field (FF) parameters. Using the developed FF models, we conducted HT grand canonical Monte Carlo (GCMC) simulations to compute hydrogen uptakes for both original and functionalized COFs. The generated data were subsequently used to evaluate the materials' gravimetric and volumetric storage performance at various temperatures (111, 231, and 296 K). Finally, we developed machine learning (ML) models to predict the hydrogen storage performance of functionalized structures based on the features of the original structures. The developed model showed excellent performance with a mean absolute error (MAE) of 0.061 wt % and 0.456 g/L for predicting the gravimetric and volumetric deliverable capacities, enabling a quick evaluation of structures in a hypothetical COF database. The screening results demonstrated that the Mg-alkoxide functionalization yields greater improvements in volumetric H
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
drinkfish完成签到 ,获得积分10
1秒前
sandra完成签到,获得积分10
1秒前
24完成签到,获得积分10
1秒前
2秒前
Fei完成签到,获得积分20
2秒前
2秒前
huiwanfeifei完成签到,获得积分10
2秒前
无花果应助健壮惋清采纳,获得10
2秒前
3秒前
追寻老九应助清脆的夜白采纳,获得10
3秒前
4秒前
Liuxinyan完成签到,获得积分10
4秒前
简单老三完成签到,获得积分10
4秒前
suiyi完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
是玥玥啊发布了新的文献求助10
6秒前
6秒前
6秒前
大美女完成签到,获得积分10
7秒前
suiyi发布了新的文献求助10
7秒前
活泼的便当完成签到,获得积分10
8秒前
iwww发布了新的文献求助10
8秒前
Decho完成签到,获得积分10
8秒前
Tourist应助大方的凌波采纳,获得10
8秒前
9秒前
YooM发布了新的文献求助10
9秒前
bkagyin应助Ronnie采纳,获得10
9秒前
研友_VZG7GZ应助范先生采纳,获得10
9秒前
hdh完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
科研怪完成签到 ,获得积分10
10秒前
ding应助Fei采纳,获得10
10秒前
桑桑发布了新的文献求助10
10秒前
JL发布了新的文献求助30
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3496094
关于积分的说明 11080521
捐赠科研通 3226507
什么是DOI,文献DOI怎么找? 1783918
邀请新用户注册赠送积分活动 867946
科研通“疑难数据库(出版商)”最低求助积分说明 800993