Computational Exploration of Adsorption-Based Hydrogen Storage in Mg-Alkoxide Functionalized Covalent-Organic Frameworks (COFs): Force-Field and Machine Learning Models

材料科学 醇盐 吸附 共价键 氢气储存 领域(数学) 纳米技术 化学工程 有机化学 复合材料 工程类 催化作用 数学 化学 纯数学 合金
作者
Yu Chen,Guobin Zhao,Sunghyun Yoon,Parsa Habibi,Chang Seop Hong,Song Li,Othonas A. Moultos,Poulumi Dey,Thijs J. H. Vlugt,Yongchul G. Chung
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (45): 61995-62009
标识
DOI:10.1021/acsami.4c11953
摘要

Hydrogen is a clean-burning fuel that can be converted to other forms. of energy without generating any greenhouse gases. Currently, hydrogen is stored either by compression to high pressure (>700 bar) or cryogenic cooling to liquid form (<23 K). Therefore, it is essential to develop safe, reliable, and energy-efficient storage technology that can store hydrogen at lower pressures and temperatures. In this work, we systematically designed 2902 Mg-alkoxide-functionalized covalent-organic frameworks (COFs) and performed high-throughput (HT) computational screening for hydrogen storage applications at 111, 231, and 296 K. To accurately model the interaction between Mg-alkoxide sites and molecular hydrogen, we performed MP2 calculations to compute the hydrogen binding energy for different types of functionalized models, and the data were subsequently used to fit modified-Morse force field (FF) parameters. Using the developed FF models, we conducted HT grand canonical Monte Carlo (GCMC) simulations to compute hydrogen uptakes for both original and functionalized COFs. The generated data were subsequently used to evaluate the materials' gravimetric and volumetric storage performance at various temperatures (111, 231, and 296 K). Finally, we developed machine learning (ML) models to predict the hydrogen storage performance of functionalized structures based on the features of the original structures. The developed model showed excellent performance with a mean absolute error (MAE) of 0.061 wt % and 0.456 g/L for predicting the gravimetric and volumetric deliverable capacities, enabling a quick evaluation of structures in a hypothetical COF database. The screening results demonstrated that the Mg-alkoxide functionalization yields greater improvements in volumetric H
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助zz采纳,获得10
刚刚
jm发布了新的文献求助20
1秒前
LP完成签到,获得积分20
1秒前
3秒前
bcxly发布了新的文献求助10
3秒前
六六发布了新的文献求助10
3秒前
李健应助Xue采纳,获得10
4秒前
4秒前
科研通AI2S应助科研小废物采纳,获得10
5秒前
科研通AI2S应助科研小废物采纳,获得10
5秒前
田様应助阿迪采纳,获得20
5秒前
6秒前
追寻紫安发布了新的文献求助10
7秒前
肘子发布了新的文献求助10
8秒前
10秒前
爆米花应助蒸馏水采纳,获得10
10秒前
烟城完成签到,获得积分20
10秒前
Sepstar完成签到,获得积分10
12秒前
安静安梦完成签到,获得积分10
12秒前
李健应助肘子采纳,获得10
13秒前
安雨笙完成签到,获得积分10
14秒前
李lailai完成签到 ,获得积分10
15秒前
18秒前
无情胡萝卜完成签到,获得积分10
18秒前
Owen应助沸羊羊采纳,获得10
18秒前
20秒前
21秒前
传奇3应助sherry采纳,获得10
21秒前
ccyy完成签到 ,获得积分10
24秒前
丑丑阿发布了新的文献求助10
24秒前
24秒前
小二郎应助Eraser采纳,获得30
25秒前
龟龟关注了科研通微信公众号
25秒前
专注雁桃发布了新的文献求助10
25秒前
LZM完成签到,获得积分10
26秒前
26秒前
小吴完成签到 ,获得积分10
26秒前
26秒前
27秒前
FengYun发布了新的文献求助10
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233633
求助须知:如何正确求助?哪些是违规求助? 2880198
关于积分的说明 8214308
捐赠科研通 2547604
什么是DOI,文献DOI怎么找? 1377100
科研通“疑难数据库(出版商)”最低求助积分说明 647736
邀请新用户注册赠送积分活动 623173