Investigating the role of auditory cues in modulating motor timing: insights from EEG and deep learning

脑电图 节拍器 手指敲击 心理学 任务(项目管理) 运动学习 神经科学 听力学 认知心理学 计算机科学 节奏 医学 内科学 经济 管理
作者
Ali Rahimpour Jounghani,Kristina C. Backer,Amirali Vahid,Daniel C. Comstock,Jafar Zamani,S. M. Hadi Hosseini,Ramesh Balasubramaniam,Heather Bortfeld
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:34 (10)
标识
DOI:10.1093/cercor/bhae427
摘要

Abstract Research on action-based timing has shed light on the temporal dynamics of sensorimotor coordination. This study investigates the neural mechanisms underlying action-based timing, particularly during finger-tapping tasks involving synchronized and syncopated patterns. Twelve healthy participants completed a continuation task, alternating between tapping in time with an auditory metronome (pacing) and continuing without it (continuation). Electroencephalography data were collected to explore how neural activity changes across these coordination modes and phases. We applied deep learning methods to classify single-trial electroencephalography data and predict behavioral timing conditions. Results showed significant classification accuracy for distinguishing between pacing and continuation phases, particularly during the presence of auditory cues, emphasizing the role of auditory input in motor timing. However, when auditory components were removed from the electroencephalography data, the differentiation between phases became inconclusive. Mean accuracy asynchrony, a measure of timing error, emerged as a superior predictor of performance variability compared to inter-response interval. These findings highlight the importance of auditory cues in modulating motor timing behaviors and present the challenges of isolating motor activation in the absence of auditory stimuli. Our study offers new insights into the neural dynamics of motor timing and demonstrates the utility of deep learning in analyzing single-trial electroencephalography data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粥粥完成签到 ,获得积分10
刚刚
刚刚
爆米花应助daqisong采纳,获得10
刚刚
元2333发布了新的文献求助20
刚刚
刚刚
爆米花应助小椰采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
烟花应助vv采纳,获得10
1秒前
2秒前
2秒前
小蘑菇应助Gnor采纳,获得10
2秒前
星辰大海应助机灵的南蕾采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
qqxin完成签到,获得积分20
2秒前
2秒前
池寒1完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
xy完成签到 ,获得积分10
4秒前
AL发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
qqxin发布了新的文献求助10
5秒前
Ava应助why911采纳,获得10
6秒前
lhxing发布了新的文献求助20
6秒前
sule发布了新的文献求助10
7秒前
所所应助wenwen采纳,获得10
7秒前
万能图书馆应助王博雅采纳,获得10
7秒前
7秒前
李健应助lll采纳,获得10
8秒前
慕青应助Lilysound采纳,获得10
8秒前
青筠发布了新的文献求助10
9秒前
妩媚的夜柳完成签到 ,获得积分10
9秒前
赘婿应助白糖采纳,获得10
9秒前
无情的猎豹完成签到 ,获得积分10
9秒前
9秒前
为什么完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932