Investigating the role of auditory cues in modulating motor timing: insights from EEG and deep learning

脑电图 节拍器 手指敲击 心理学 任务(项目管理) 运动学习 神经科学 听力学 认知心理学 计算机科学 节奏 医学 管理 经济 内科学
作者
Ali Rahimpour Jounghani,Kristina C. Backer,Amirali Vahid,Daniel C. Comstock,Jafar Zamani,S. M. Hadi Hosseini,Ramesh Balasubramaniam,Heather Bortfeld
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:34 (10)
标识
DOI:10.1093/cercor/bhae427
摘要

Abstract Research on action-based timing has shed light on the temporal dynamics of sensorimotor coordination. This study investigates the neural mechanisms underlying action-based timing, particularly during finger-tapping tasks involving synchronized and syncopated patterns. Twelve healthy participants completed a continuation task, alternating between tapping in time with an auditory metronome (pacing) and continuing without it (continuation). Electroencephalography data were collected to explore how neural activity changes across these coordination modes and phases. We applied deep learning methods to classify single-trial electroencephalography data and predict behavioral timing conditions. Results showed significant classification accuracy for distinguishing between pacing and continuation phases, particularly during the presence of auditory cues, emphasizing the role of auditory input in motor timing. However, when auditory components were removed from the electroencephalography data, the differentiation between phases became inconclusive. Mean accuracy asynchrony, a measure of timing error, emerged as a superior predictor of performance variability compared to inter-response interval. These findings highlight the importance of auditory cues in modulating motor timing behaviors and present the challenges of isolating motor activation in the absence of auditory stimuli. Our study offers new insights into the neural dynamics of motor timing and demonstrates the utility of deep learning in analyzing single-trial electroencephalography data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
俭朴的红牛完成签到,获得积分10
5秒前
琦琦发布了新的文献求助10
5秒前
zho应助cherlia采纳,获得10
7秒前
坚强白玉完成签到,获得积分10
7秒前
zho应助大雨采纳,获得10
8秒前
8秒前
8秒前
zheyu完成签到,获得积分10
9秒前
10秒前
李嶍烨完成签到,获得积分10
11秒前
11秒前
11秒前
薛枏完成签到,获得积分10
12秒前
yzl科研爱我完成签到,获得积分10
14秒前
15秒前
炙热萝完成签到,获得积分10
15秒前
15秒前
16秒前
夏天无发布了新的文献求助10
16秒前
17秒前
学术安陵容关注了科研通微信公众号
19秒前
111发布了新的文献求助10
19秒前
Xxaaa发布了新的文献求助10
20秒前
赘婿应助奕初阳采纳,获得10
21秒前
CipherSage应助ccc采纳,获得10
21秒前
迢迢笙箫应助董竹君采纳,获得30
22秒前
甜甜玫瑰应助Marciu33采纳,获得10
23秒前
殊桐完成签到,获得积分10
26秒前
田様应助young采纳,获得10
27秒前
27秒前
赵李奕安发布了新的文献求助10
28秒前
科研通AI2S应助yangyajie采纳,获得10
31秒前
lvlei发布了新的文献求助10
32秒前
JYX完成签到 ,获得积分10
32秒前
细腻慕儿完成签到 ,获得积分10
33秒前
111完成签到,获得积分10
35秒前
36秒前
36秒前
36秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150257
求助须知:如何正确求助?哪些是违规求助? 2801405
关于积分的说明 7844390
捐赠科研通 2458892
什么是DOI,文献DOI怎么找? 1308773
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721