铜绿假单胞菌
微生物学
他唑巴坦
生物
头孢菌素
假单胞菌
细菌
抗生素
哌拉西林
遗传学
作者
Aliaa Fouad,Samantha Nicolau,Pranita D. Tamma,Patricia J. Simner,Yasmeen Abouelhassan,Christian M Gill
摘要
Abstract Background Bacterial persistence is a phenomenon whereby a subpopulation of bacteria survive high concentrations of an active antibiotic in the absence of phenotypic alterations. Persisters are associated with chronic and recurrent infections for pathogens including Pseudomonas aeruginosa. Understanding persister profiles of newer antibiotics such as cefiderocol and ceftolozane/tazobactam against P. aeruginosa is warranted as these agents generally target difficult-to-treat infections. Methods Persister formation was assessed using in vitro assays against nine clinical P. aeruginosa isolates exposed to cefiderocol or ceftolozane/tazobactam. Quantitative persister assays were performed using a stationary phase of bacteria challenged with 10-fold MIC drug concentrations. Persisters were quantitated as the percent persisters at 24 h and the log ratio (LR) difference in AUC for cfu for each antibiotic alone compared with growth control. The tolerance disc test (TDtest) was used to qualitatively detect persisters. Results Percent persisters at 24 h was lower with cefiderocol compared with ceftolozane/tazobactam for six of the nine tested isolates. Eight of the nine isolates had higher reduction in LR for cefiderocol groups, suggesting an overall higher and more rapid bacterial reduction in cefiderocol groups. For cefiderocol, five of the nine tested isolates lacked regrowth after replacement with glucose disc, suggesting no persistence via the TDtest. For ceftolozane/tazobactam, three isolates lacked persister formation. Conclusions Cefiderocol resulted in less bacterial persistence relative to ceftolozane/tazobactam against nine clinical P. aeruginosa isolates. Cefiderocol’s siderophore mechanism may be advantageous over ceftolozane/tazobactam through enhanced anti-persister effects. Clinical correlation of these findings is warranted as persisters can lead to antibiotic resistance and treatment failure.
科研通智能强力驱动
Strongly Powered by AbleSci AI