煅烧
催化作用
介质阻挡放电
合成气
甲烷
碳纤维
二氧化碳重整
化学工程
微晶
粒径
材料科学
无机化学
色散(光学)
分解
化学
电介质
冶金
复合材料
有机化学
复合数
物理
光电子学
工程类
光学
作者
Thitiporn Suttikul,Chantaraporn Phalakornkule,Patcharin Naemchanthara,Annop Klamchuen,Tuksadon Wutikhun,Kulwadee Theanngern,Sanchai Kuboon,Sasikarn Nuchdang
标识
DOI:10.1016/j.joei.2024.101781
摘要
CO2 and CH4 are converted to syngas by dry reforming of methane (DRM) reaction. This research investigated the effects of the Mg promoter on Al2O3-supported Ni catalysts and Mg calcination temperature on the DRM performance in a parallel plate dielectric barrier discharge reactor. The Mg promoter played a crucial role in the DRM performance, as increasing the Mg calcination temperature from 700 °C to 800 °C significantly improved the DRM performance and catalyst properties, including increased specific surface area, decreased total acidity, reduced crystallite and particle sizes, and more uniform dispersion of the Ni nanoparticles. Under these conditions, the H2 and CO selectivity were 77.0 % and 70.7 %, the CH4 and CO2 conversion were 25.1 % and 20.6 %, and the energy efficiency was 8.4 %. In addition, the catalyst was associated with a lower coking rate (0.5 mg C/gcat h), a relatively low carbon deposit of 1.5 %, and a carbon loss of 2.8 %, possibly because the weak acidity hindered the Boudouard reaction and CH4 decomposition. However, increasing the Mg calcination temperature to 900 °C increased the total acidity and Ni particle size, decreasing H2 and CO selectivities and increasing carbon deposits on the catalyst surface.
科研通智能强力驱动
Strongly Powered by AbleSci AI