Harnessing Physics-inspired Machine Learning to Design Nanocluster Catalysts for Dehydrogenating Liquid Organic Hydrogen Carriers

催化作用 化学 有机化学
作者
C. Liu Qing Lin,Bryan Lee,Uzma Anjum,Asmee Prabhu,Rong Xu,Tej S. Choksi
标识
DOI:10.26434/chemrxiv-2024-bj36p
摘要

Using liquid organic hydrogen carriers for the trans-oceanic shipment of hydrogen requires selective and low-cost dehydrogenation catalysts. Machine learning methods can accelerate the discovery of these catalysts. The state-of-the-art machine learning methods are however limited by challenges associated with building predictive models for large cyclic intermediates that adsorb and react on low-symmetry active sites. Focusing on methyl cyclohexane dehydrogenation to toluene, an industrially relevant hydrogen carrier, we introduce a machine learning approach to accelerate the design of selective and cost-effective catalysts. Using inputs to a gaussian process regression model that are inspired by physical theories of chemisorption, we predict the adsorption energies of large hydrocarbon intermediates that are encountered during methyl cyclohexane dehydrogenation. Across bimetallic active sites of nanoclusters having varied shapes and compositions, our model yields mean absolute errors of 0.11 – 0.25 eV on test sets and utilizes under 100 datapoints per reaction intermediate. This model is integrated with a microkinetic model to identify promising catalysts. Modifying Pt nanoclusters with IB, IIB, and post-transition elements like Cu and Sn increases dehydrogenation rates, reduces unselective reactions, and lowers Pt utilization, consistent with prior experiments. This work presents a scalable, and efficient framework for designing bimetallic catalysts for dehydrogenating hydrogen carriers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDDDDD完成签到,获得积分10
刚刚
miemie发布了新的文献求助30
2秒前
爆米花应助嗯,你说得对采纳,获得10
2秒前
大模型应助淡淡的小蜜蜂采纳,获得10
3秒前
lalalatiancai发布了新的文献求助10
3秒前
3秒前
4秒前
HaohaoLi完成签到,获得积分10
4秒前
务实的夏菡完成签到,获得积分10
6秒前
6秒前
FashionBoy应助TPolymer采纳,获得10
7秒前
HaohaoLi发布了新的文献求助10
8秒前
yelis完成签到 ,获得积分10
9秒前
9秒前
10秒前
娜罗的名单完成签到,获得积分10
13秒前
从容芮应助坦率盼秋采纳,获得10
14秒前
15秒前
Missy关注了科研通微信公众号
15秒前
16秒前
SciGPT应助lalalatiancai采纳,获得10
17秒前
DG完成签到,获得积分10
17秒前
lee发布了新的文献求助10
18秒前
搜集达人应助yuhang采纳,获得10
19秒前
嗯,你说得对完成签到,获得积分10
20秒前
悦耳亦云完成签到 ,获得积分10
22秒前
韩同刚完成签到,获得积分10
22秒前
23秒前
ppy完成签到 ,获得积分10
24秒前
lee完成签到,获得积分20
24秒前
25秒前
xbo完成签到,获得积分10
28秒前
清脆慕儿发布了新的文献求助10
28秒前
32秒前
充电宝应助义气访曼采纳,获得50
33秒前
34秒前
Chochee完成签到,获得积分10
34秒前
lx发布了新的文献求助10
35秒前
依旧完成签到,获得积分10
35秒前
修管子完成签到 ,获得积分10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353002
求助须知:如何正确求助?哪些是违规求助? 2977782
关于积分的说明 8682092
捐赠科研通 2658911
什么是DOI,文献DOI怎么找? 1456009
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884