Harnessing Physics-inspired Machine Learning to Design Nanocluster Catalysts for Dehydrogenating Liquid Organic Hydrogen Carriers

催化作用 化学 有机化学
作者
C. Liu Qing Lin,Bryan Lee,Uzma Anjum,Asmee Prabhu,Rong Xu,Tej S. Choksi
标识
DOI:10.26434/chemrxiv-2024-bj36p
摘要

Using liquid organic hydrogen carriers for the trans-oceanic shipment of hydrogen requires selective and low-cost dehydrogenation catalysts. Machine learning methods can accelerate the discovery of these catalysts. The state-of-the-art machine learning methods are however limited by challenges associated with building predictive models for large cyclic intermediates that adsorb and react on low-symmetry active sites. Focusing on methyl cyclohexane dehydrogenation to toluene, an industrially relevant hydrogen carrier, we introduce a machine learning approach to accelerate the design of selective and cost-effective catalysts. Using inputs to a gaussian process regression model that are inspired by physical theories of chemisorption, we predict the adsorption energies of large hydrocarbon intermediates that are encountered during methyl cyclohexane dehydrogenation. Across bimetallic active sites of nanoclusters having varied shapes and compositions, our model yields mean absolute errors of 0.11 – 0.25 eV on test sets and utilizes under 100 datapoints per reaction intermediate. This model is integrated with a microkinetic model to identify promising catalysts. Modifying Pt nanoclusters with IB, IIB, and post-transition elements like Cu and Sn increases dehydrogenation rates, reduces unselective reactions, and lowers Pt utilization, consistent with prior experiments. This work presents a scalable, and efficient framework for designing bimetallic catalysts for dehydrogenating hydrogen carriers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dara发布了新的文献求助30
5秒前
5秒前
学术小白菜完成签到,获得积分20
7秒前
李思松完成签到 ,获得积分10
7秒前
7秒前
鲤鱼诗桃发布了新的文献求助10
8秒前
幽默的语蕊完成签到,获得积分20
8秒前
9秒前
gladuhere完成签到 ,获得积分10
10秒前
TT0622完成签到,获得积分10
11秒前
科研通AI6应助fujun0095采纳,获得10
12秒前
王子怡发布了新的文献求助10
13秒前
Doctor_Peng完成签到,获得积分10
13秒前
白斯特完成签到,获得积分10
13秒前
sophiemore完成签到,获得积分10
13秒前
13秒前
14秒前
乐观的眼睛完成签到,获得积分10
16秒前
22完成签到,获得积分10
17秒前
18秒前
高伟杰完成签到,获得积分10
18秒前
石烟祝完成签到,获得积分10
21秒前
GongSyi发布了新的文献求助10
22秒前
MinQi完成签到,获得积分10
22秒前
辉辉完成签到 ,获得积分10
23秒前
沿途有你完成签到 ,获得积分10
26秒前
CodeCraft应助不想上班了采纳,获得10
28秒前
萝卜完成签到,获得积分10
30秒前
yulx001完成签到,获得积分10
31秒前
32秒前
抹茶肥肠完成签到,获得积分10
33秒前
34秒前
2211完成签到,获得积分10
35秒前
秋沧海发布了新的文献求助10
36秒前
36秒前
37秒前
科研狗完成签到,获得积分10
38秒前
yulx001发布了新的文献求助10
38秒前
曾经耳机完成签到 ,获得积分10
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560690
求助须知:如何正确求助?哪些是违规求助? 4645958
关于积分的说明 14676816
捐赠科研通 4587117
什么是DOI,文献DOI怎么找? 2516803
邀请新用户注册赠送积分活动 1490308
关于科研通互助平台的介绍 1461136