清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting blood–brain barrier permeability of molecules with a large language model and machine learning

人工智能 生物信息学 计算机科学 血脑屏障 机器学习 随机森林 药物发现 试验装置 深度学习 分类器(UML) 生物信息学 化学 生物 神经科学 基因 中枢神经系统 生物化学
作者
Eddie Huang,Jai‐Sing Yang,Ken Ying-Kai Liao,Warren C. W. Tseng,Chien-Yu Lee,Michelle Gill,Colin B. Compas,Simon See,Fuu‐Jen Tsai
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:11
标识
DOI:10.1038/s41598-024-66897-y
摘要

Abstract Predicting the blood–brain barrier (BBB) permeability of small-molecule compounds using a novel artificial intelligence platform is necessary for drug discovery. Machine learning and a large language model on artificial intelligence (AI) tools improve the accuracy and shorten the time for new drug development. The primary goal of this research is to develop artificial intelligence (AI) computing models and novel deep learning architectures capable of predicting whether molecules can permeate the human blood–brain barrier (BBB). The in silico (computational) and in vitro (experimental) results were validated by the Natural Products Research Laboratories (NPRL) at China Medical University Hospital (CMUH). The transformer-based MegaMolBART was used as the simplified molecular input line entry system (SMILES) encoder with an XGBoost classifier as an in silico method to check if a molecule could cross through the BBB. We used Morgan or Circular fingerprints to apply the Morgan algorithm to a set of atomic invariants as a baseline encoder also with an XGBoost classifier to compare the results. BBB permeability was assessed in vitro using three-dimensional (3D) human BBB spheroids (human brain microvascular endothelial cells, brain vascular pericytes, and astrocytes). Using multiple BBB databases, the results of the final in silico transformer and XGBoost model achieved an area under the receiver operating characteristic curve of 0.88 on the held-out test dataset. Temozolomide (TMZ) and 21 randomly selected BBB permeable compounds (Pred scores = 1, indicating BBB-permeable) from the NPRL penetrated human BBB spheroid cells. No evidence suggests that ferulic acid or five BBB-impermeable compounds (Pred scores < 1.29423E−05, which designate compounds that pass through the human BBB) can pass through the spheroid cells of the BBB. Our validation of in vitro experiments indicated that the in silico prediction of small-molecule permeation in the BBB model is accurate. Transformer-based models like MegaMolBART, leveraging the SMILES representations of molecules, show great promise for applications in new drug discovery. These models have the potential to accelerate the development of novel targeted treatments for disorders of the central nervous system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuehan完成签到 ,获得积分10
8秒前
小白白完成签到 ,获得积分10
10秒前
back you up应助科研通管家采纳,获得30
10秒前
back you up应助科研通管家采纳,获得30
10秒前
17秒前
MAY完成签到,获得积分10
18秒前
19秒前
MAY发布了新的文献求助10
21秒前
xiaoyi完成签到 ,获得积分10
48秒前
侠客完成签到 ,获得积分10
53秒前
xxc完成签到 ,获得积分10
55秒前
研友_08oa3n完成签到 ,获得积分10
1分钟前
洁净的静芙完成签到 ,获得积分10
1分钟前
烟花应助MAY采纳,获得10
1分钟前
wujiwuhui完成签到 ,获得积分10
1分钟前
小瓶盖完成签到 ,获得积分10
2分钟前
cdercder应助科研通管家采纳,获得20
2分钟前
眯眯眼的安雁完成签到 ,获得积分10
2分钟前
花花521完成签到,获得积分10
2分钟前
杪夏二八完成签到 ,获得积分10
2分钟前
dashi完成签到 ,获得积分10
2分钟前
隐形曼青应助zzzzzer0采纳,获得10
2分钟前
陈好好完成签到 ,获得积分10
2分钟前
草拟大坝完成签到 ,获得积分0
2分钟前
zzzzzer0完成签到,获得积分10
2分钟前
2分钟前
zzzzzer0发布了新的文献求助10
3分钟前
Dong完成签到 ,获得积分10
3分钟前
可夫司机完成签到 ,获得积分10
3分钟前
艾斯巍峨儿完成签到 ,获得积分10
3分钟前
桐桐应助实验狗采纳,获得10
3分钟前
HJJHJH完成签到,获得积分20
3分钟前
HJJHJH发布了新的文献求助80
3分钟前
3分钟前
完美世界应助zzzzzer0采纳,获得10
3分钟前
实验狗发布了新的文献求助10
3分钟前
qq完成签到 ,获得积分10
3分钟前
墨墨完成签到,获得积分10
3分钟前
星辰完成签到 ,获得积分10
4分钟前
研友_Z7grXZ完成签到,获得积分10
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773684
求助须知:如何正确求助?哪些是违规求助? 3319183
关于积分的说明 10193524
捐赠科研通 3033864
什么是DOI,文献DOI怎么找? 1664811
邀请新用户注册赠送积分活动 796305
科研通“疑难数据库(出版商)”最低求助积分说明 757416