MRI-based Intratumoral and Peritumoral Radiomics for Prognosis Prediction in Glioma Patients

医学 胶质瘤 接收机工作特性 比例危险模型 逻辑回归 放射性武器 随机森林 无线电技术 单变量分析 放射科 人工智能 肿瘤科 多元分析 内科学 癌症研究 计算机科学
作者
Min Gao,Jingyi Cheng,Anqi Qiu,Zhao Dong,Jie Wang,Jun Liu
出处
期刊:Clinical Radiology [Elsevier]
标识
DOI:10.1016/j.crad.2024.08.005
摘要

Highlights•Combined intratumoral and peritumoral radiomics predict glioma prognosis.•Insights into peritumor microenvironment aid individualized surgical plans.•T2WI strongly correlates with glioma prognosis, more than T1-enhanced sequences.•T2WI provides richer content for future multimodal MRI research.AbstractObjectiveThe purpose of this study was to identify robust radiological features from intratumoral and peritumoral regions, evaluate MRI protocols and machine learning methods for overall survival stratification of glioma patients, and explore the relationship between radiological features and the tumor microenvironment.MethodsA retrospective analysis was conducted on 163 glioma patients, divided into a training set (n=113) and a testing set (n=50). For each patient, 2135 features were extracted from clinical MRI. Feature selection was performed using the Minimum Redundancy Maximum Relevance method and the Random Forest (RF) algorithm. Prognostic factors were assessed using the Cox proportional hazards model. Four machine learning models (RF, Logistic Regression, Support Vector Machine, and XGBoost) were trained on clinical and radiological features from tumor and peritumoral regions. Model evaluations on the testing set used Receiver Operating Characteristic curves.ResultsAmong the 163 patients, 96 had an overall survival (OS) of less than three years post-surgery, while 67 had an OS of more than three years. Univariate Cox regression in the validation set indicated that age (p=0.003) and tumor grade (p<0.001) were positively associated with the risk of death within three years post-surgery. The final predictive model incorporated 13 radiological and 7 clinical features. The RF model, combining intratumor and peritumor radiomics, achieved the best predictive performance (AUC = 0.91; ACC = 0.86), outperforming single-region models.ConclusionCombined intratumoral and peritumoral radiomics can improve survival prediction and has potential as a practical imaging biomarker to guide clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓佳鑫Alan应助Felix采纳,获得20
2秒前
㙓㙓发布了新的文献求助10
3秒前
朝阳应助ZhangXR采纳,获得10
3秒前
4秒前
kksk发布了新的文献求助20
4秒前
王金金发布了新的文献求助10
4秒前
5秒前
AireenBeryl531完成签到,获得积分0
5秒前
bale关注了科研通微信公众号
5秒前
5秒前
jiangmj1990完成签到,获得积分10
6秒前
夏虫完成签到,获得积分10
6秒前
情怀应助Moonlight采纳,获得10
6秒前
威武依琴完成签到 ,获得积分10
6秒前
SC234完成签到 ,获得积分10
6秒前
6秒前
7秒前
飞快的兔子完成签到 ,获得积分10
8秒前
胖胖张啊完成签到,获得积分10
8秒前
fangzheng完成签到,获得积分10
8秒前
8秒前
zhoa完成签到,获得积分20
9秒前
9秒前
王w发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
高手中的糕手完成签到,获得积分10
12秒前
bkagyin应助王金金采纳,获得10
13秒前
13秒前
西贝发布了新的文献求助10
13秒前
zzzzzz发布了新的文献求助10
13秒前
缓慢的灵枫完成签到,获得积分10
13秒前
科研通AI2S应助机灵夜云采纳,获得20
14秒前
Orange应助一向光年有限身采纳,获得10
15秒前
15秒前
火山排骨发布了新的文献求助10
15秒前
UltraWillow发布了新的文献求助10
15秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148940
求助须知:如何正确求助?哪些是违规求助? 2800005
关于积分的说明 7837927
捐赠科研通 2457512
什么是DOI,文献DOI怎么找? 1307891
科研通“疑难数据库(出版商)”最低求助积分说明 628322
版权声明 601685