MRI-based Intratumoral and Peritumoral Radiomics for Prognosis Prediction in Glioma Patients

医学 胶质瘤 接收机工作特性 比例危险模型 逻辑回归 放射性武器 随机森林 无线电技术 单变量分析 放射科 人工智能 肿瘤科 多元分析 内科学 计算机科学 癌症研究
作者
Min Gao,Jingyi Cheng,Anqi Qiu,Zhao Dong,Jie Wang,Jun Liu
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (11): e1383-e1393 被引量:2
标识
DOI:10.1016/j.crad.2024.08.005
摘要

Highlights•Combined intratumoral and peritumoral radiomics predict glioma prognosis.•Insights into peritumor microenvironment aid individualized surgical plans.•T2WI strongly correlates with glioma prognosis, more than T1-enhanced sequences.•T2WI provides richer content for future multimodal MRI research.AbstractObjectiveThe purpose of this study was to identify robust radiological features from intratumoral and peritumoral regions, evaluate MRI protocols and machine learning methods for overall survival stratification of glioma patients, and explore the relationship between radiological features and the tumor microenvironment.MethodsA retrospective analysis was conducted on 163 glioma patients, divided into a training set (n=113) and a testing set (n=50). For each patient, 2135 features were extracted from clinical MRI. Feature selection was performed using the Minimum Redundancy Maximum Relevance method and the Random Forest (RF) algorithm. Prognostic factors were assessed using the Cox proportional hazards model. Four machine learning models (RF, Logistic Regression, Support Vector Machine, and XGBoost) were trained on clinical and radiological features from tumor and peritumoral regions. Model evaluations on the testing set used Receiver Operating Characteristic curves.ResultsAmong the 163 patients, 96 had an overall survival (OS) of less than three years post-surgery, while 67 had an OS of more than three years. Univariate Cox regression in the validation set indicated that age (p=0.003) and tumor grade (p<0.001) were positively associated with the risk of death within three years post-surgery. The final predictive model incorporated 13 radiological and 7 clinical features. The RF model, combining intratumor and peritumor radiomics, achieved the best predictive performance (AUC = 0.91; ACC = 0.86), outperforming single-region models.ConclusionCombined intratumoral and peritumoral radiomics can improve survival prediction and has potential as a practical imaging biomarker to guide clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
番茄豆丁完成签到 ,获得积分10
2秒前
2秒前
领导范儿应助www采纳,获得10
3秒前
4秒前
4秒前
小栖是菇凉完成签到,获得积分10
4秒前
HEHE完成签到,获得积分20
4秒前
CipherSage应助壮观夜南采纳,获得10
4秒前
4秒前
5秒前
5秒前
科研之路发布了新的文献求助10
5秒前
糯米糍发布了新的文献求助30
7秒前
桐桐应助wencan采纳,获得10
7秒前
9秒前
9秒前
大模型应助莫茹采纳,获得10
10秒前
lcc发布了新的文献求助10
11秒前
Abl完成签到 ,获得积分10
11秒前
11秒前
13秒前
13秒前
13秒前
SoyLucia发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
深情安青应助何raven采纳,获得10
14秒前
斯文的慕儿完成签到 ,获得积分10
14秒前
12345完成签到,获得积分10
14秒前
LKLK完成签到 ,获得积分20
16秒前
术士1000发布了新的文献求助10
16秒前
科研通AI2S应助wwq采纳,获得30
18秒前
18秒前
英俊的铭应助xyx采纳,获得10
18秒前
20秒前
21秒前
阿晖完成签到,获得积分10
21秒前
852应助lcc采纳,获得10
21秒前
打打应助lcc采纳,获得10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680471
求助须知:如何正确求助?哪些是违规求助? 4999474
关于积分的说明 15173146
捐赠科研通 4840392
什么是DOI,文献DOI怎么找? 2594044
邀请新用户注册赠送积分活动 1547083
关于科研通互助平台的介绍 1505062