Analysis of risk factors for lymph node metastasis in 241 patients with thyroid carcinoma and establishment of a prediction model

淋巴结转移 甲状腺癌 甲状腺肿瘤 淋巴结 肿瘤科 医学 转移 癌症研究 甲状腺 甲状腺癌 内科学 病理 癌症
作者
Wanzhi Chen,Jichun Yu,Kunlin Lei,Rong Xie,Haiyan Wang,Meijun Zhong
出处
期刊:American Journal of Cancer Research [e-Century Publishing Corporation]
卷期号:14 (6): 3104-3116
标识
DOI:10.62347/hdna2969
摘要

This study aimed to identify risk factors for cervical lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC) and develop a clinical prediction model. Retrospectively, data were collected from 348 PTC patients treated at the Second Affiliated Hospital of Nanchang University between January 2019 and December 2022, with 241 patients included in the final analyses. Patients with lateral cervical LNM were categorized into a metastasis group, and those without were in a non-metastasis group. The patients were divided into a training set (n=169) and a validation set (n=72) in a 7:3 ratio. Logistic and least absolute shrinkage and selection operator (LASSO) regression models were used to identify key factors associated with lateral cervical LNM and prognosis, enabling the construction of a predictive model. The model's validity was assessed via the Hosmer-Lemeshow Test, calibration curves, ROC curves, and decision curve analysis. The metastasis group exhibited higher proportions of males, multiple lesions, bilateral involvement, tumor diameter ≥1 cm, and elevated levels of PLR, LMR, and NLR (P<0.05). Logistic regression analysis revealed that gender, multiple lesions, affected side, and tumor diameter were associated with lateral cervical LNM (P<0.05). The predictive Nomogram model, which included factors like affected side, tumor diameter, capsular invasion, central LNM, PLR, and NLR, demonstrated strong predictive accuracy and clinical utility. Thus, this study provides a practical clinical tool through an accurate Nomogram model to assess lateral cervical LNM risk in PTC patients using logistic and LASSO regression analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
维尼发布了新的文献求助10
3秒前
科目三应助xtt采纳,获得10
4秒前
多情鑫鹏发布了新的文献求助10
5秒前
大佬完成签到,获得积分10
5秒前
5秒前
完美世界应助唐唐采纳,获得10
6秒前
6秒前
铁男卡卡罗特完成签到,获得积分10
7秒前
8秒前
大佬发布了新的文献求助10
8秒前
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
10秒前
小蘑菇应助科研通管家采纳,获得30
10秒前
CHENG_2025应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
11秒前
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
Linda发布了新的文献求助10
12秒前
早睡早起健康长寿完成签到,获得积分10
13秒前
帅气发布了新的文献求助10
13秒前
未来可期发布了新的文献求助10
13秒前
叹陌发布了新的文献求助30
16秒前
17秒前
FashionBoy应助铁男卡卡罗特采纳,获得10
17秒前
17秒前
FashionBoy应助gc采纳,获得10
18秒前
淀粉肠完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517