Analysis of risk factors for lymph node metastasis in 241 patients with thyroid carcinoma and establishment of a prediction model

淋巴结转移 甲状腺癌 甲状腺肿瘤 淋巴结 肿瘤科 医学 转移 癌症研究 甲状腺 甲状腺癌 内科学 病理 癌症
作者
Wanzhi Chen,Jichun Yu,Kunlin Lei,Rong Xie,Haiyan Wang,Meijun Zhong
出处
期刊:American Journal of Cancer Research 卷期号:14 (6): 3104-3116
标识
DOI:10.62347/hdna2969
摘要

This study aimed to identify risk factors for cervical lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC) and develop a clinical prediction model. Retrospectively, data were collected from 348 PTC patients treated at the Second Affiliated Hospital of Nanchang University between January 2019 and December 2022, with 241 patients included in the final analyses. Patients with lateral cervical LNM were categorized into a metastasis group, and those without were in a non-metastasis group. The patients were divided into a training set (n=169) and a validation set (n=72) in a 7:3 ratio. Logistic and least absolute shrinkage and selection operator (LASSO) regression models were used to identify key factors associated with lateral cervical LNM and prognosis, enabling the construction of a predictive model. The model's validity was assessed via the Hosmer-Lemeshow Test, calibration curves, ROC curves, and decision curve analysis. The metastasis group exhibited higher proportions of males, multiple lesions, bilateral involvement, tumor diameter ≥1 cm, and elevated levels of PLR, LMR, and NLR (P<0.05). Logistic regression analysis revealed that gender, multiple lesions, affected side, and tumor diameter were associated with lateral cervical LNM (P<0.05). The predictive Nomogram model, which included factors like affected side, tumor diameter, capsular invasion, central LNM, PLR, and NLR, demonstrated strong predictive accuracy and clinical utility. Thus, this study provides a practical clinical tool through an accurate Nomogram model to assess lateral cervical LNM risk in PTC patients using logistic and LASSO regression analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangyulu完成签到 ,获得积分10
1秒前
1秒前
独特不斜完成签到,获得积分10
1秒前
海底落日发布了新的文献求助30
1秒前
共享精神应助紧张的妖妖采纳,获得10
1秒前
耶耶粘豆包完成签到 ,获得积分10
2秒前
dingdong发布了新的文献求助10
3秒前
xunxunmimi发布了新的文献求助50
3秒前
Z小姐发布了新的文献求助10
3秒前
幽壑之潜蛟应助123采纳,获得10
4秒前
是天使呢发布了新的文献求助10
4秒前
4秒前
研友_VZG7GZ应助坨坨西州采纳,获得10
5秒前
5秒前
华华完成签到,获得积分10
5秒前
刘明发布了新的文献求助10
5秒前
1604531786发布了新的文献求助10
7秒前
魁梧的小霸王完成签到,获得积分10
7秒前
星辰大海应助123采纳,获得10
7秒前
7秒前
是一只象完成签到,获得积分20
7秒前
科研通AI5应助海鸥海鸥采纳,获得10
8秒前
幸福遥完成签到,获得积分10
9秒前
9秒前
小王发布了新的文献求助10
9秒前
热心的代桃完成签到,获得积分10
9秒前
CodeCraft应助Olsters采纳,获得10
9秒前
10秒前
研友_IEEE快到碗里来完成签到,获得积分10
11秒前
哈哈大笑应助吴岳采纳,获得10
11秒前
11秒前
酷炫中蓝完成签到,获得积分10
11秒前
早川完成签到 ,获得积分10
12秒前
拼搏语薇完成签到,获得积分10
12秒前
科研通AI5应助SCI采纳,获得10
13秒前
dling02完成签到 ,获得积分10
13秒前
13秒前
是天使呢完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794