Analysis of risk factors for lymph node metastasis in 241 patients with thyroid carcinoma and establishment of a prediction model

淋巴结转移 甲状腺癌 甲状腺肿瘤 淋巴结 肿瘤科 医学 转移 癌症研究 甲状腺 甲状腺癌 内科学 病理 癌症
作者
Wanzhi Chen,Jichun Yu,Kunlin Lei,Rong Xie,Haiyan Wang,Meijun Zhong
出处
期刊:American Journal of Cancer Research 卷期号:14 (6): 3104-3116
标识
DOI:10.62347/hdna2969
摘要

This study aimed to identify risk factors for cervical lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC) and develop a clinical prediction model. Retrospectively, data were collected from 348 PTC patients treated at the Second Affiliated Hospital of Nanchang University between January 2019 and December 2022, with 241 patients included in the final analyses. Patients with lateral cervical LNM were categorized into a metastasis group, and those without were in a non-metastasis group. The patients were divided into a training set (n=169) and a validation set (n=72) in a 7:3 ratio. Logistic and least absolute shrinkage and selection operator (LASSO) regression models were used to identify key factors associated with lateral cervical LNM and prognosis, enabling the construction of a predictive model. The model's validity was assessed via the Hosmer-Lemeshow Test, calibration curves, ROC curves, and decision curve analysis. The metastasis group exhibited higher proportions of males, multiple lesions, bilateral involvement, tumor diameter ≥1 cm, and elevated levels of PLR, LMR, and NLR (P<0.05). Logistic regression analysis revealed that gender, multiple lesions, affected side, and tumor diameter were associated with lateral cervical LNM (P<0.05). The predictive Nomogram model, which included factors like affected side, tumor diameter, capsular invasion, central LNM, PLR, and NLR, demonstrated strong predictive accuracy and clinical utility. Thus, this study provides a practical clinical tool through an accurate Nomogram model to assess lateral cervical LNM risk in PTC patients using logistic and LASSO regression analyses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琉璃苣发布了新的文献求助10
刚刚
xiemou完成签到,获得积分10
刚刚
1秒前
小马甲应助MoXian采纳,获得10
1秒前
1秒前
1秒前
笑点低衬衫完成签到 ,获得积分10
2秒前
2秒前
2秒前
OPO完成签到,获得积分10
2秒前
3秒前
4秒前
酱酱君完成签到,获得积分10
5秒前
5秒前
琉璃苣完成签到,获得积分10
5秒前
沐阳d完成签到,获得积分10
6秒前
满天星完成签到,获得积分10
6秒前
Yeah_椰椰完成签到,获得积分10
7秒前
冷傲达发布了新的文献求助10
8秒前
沐阳d发布了新的文献求助10
8秒前
酱酱君发布了新的文献求助10
8秒前
9秒前
汉堡包应助坚果采纳,获得10
9秒前
9秒前
苹果香菱发布了新的文献求助30
10秒前
兴奋鼠标发布了新的文献求助20
11秒前
carol7298完成签到 ,获得积分10
11秒前
12秒前
斯文败类应助自信钧采纳,获得10
12秒前
MoXian发布了新的文献求助10
13秒前
jing完成签到,获得积分10
13秒前
可爱的函函应助黑钻采纳,获得10
13秒前
13秒前
xue发布了新的文献求助10
14秒前
14秒前
15秒前
赘婿应助吾猫采纳,获得10
16秒前
16秒前
科目三应助孤独的芒果采纳,获得10
17秒前
jimi完成签到 ,获得积分20
17秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221700
求助须知:如何正确求助?哪些是违规求助? 2870410
关于积分的说明 8170405
捐赠科研通 2537357
什么是DOI,文献DOI怎么找? 1369382
科研通“疑难数据库(出版商)”最低求助积分说明 645496
邀请新用户注册赠送积分活动 619179