The Impact of the Opportunity Zone Program on Residential Real Estate

业务 房地产 财务 住宅房地产 运营管理 经济
作者
Ron Bekkerman,Maxime C. Cohen,Xiaoyan Liu,John Maiden,Dmitry Mitrofanov
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2024.0746
摘要

Problem definition: Opportunity zones (OZs) are designated census tracts in which real estate investments can gain tax benefits. Introduced by the U.S. Tax Cuts and Jobs Act of 2017, the goal of the OZ program is to foster economic development in distressed neighborhoods. In this paper, we investigate and optimize the OZ selection process and examine the impact of OZs by exploiting two data sets: a proprietary real estate data set that includes 36.1 million residential transactions spanning all 50 U.S. states and census-tract demographics data between 2010 and 2019. Methodology/results: We show that census tracts with higher poverty and unemployment rates were more likely to be selected. Counterintuitively, however, tracts with a higher average real estate price were also more likely to be selected. We then apply difference-in-differences, synthetic control, and matching techniques to rigorously assess the impact of the OZ program on two key real estate metrics: price and transaction volume. We find that the OZ program increased real estate prices by 4.03%–6.13% but do not observe a significant effect on the transaction volume. We also find that investors primarily targeted the high-end real estate market, namely, exhibiting a cherry-picking behavior. To better fulfill its intended societal and economic goals, we propose an optimization framework with fairness considerations for OZ assignment decisions. We show that the OZs assigned from our fairness-aware optimization formulation can better serve distressed communities and mitigate investors’ cherry-picking behavior. Managerial implications: Our paper underscores the importance of incorporating fairness in OZ designation to achieve a desirable real estate market reaction. Our large-scale empirical analysis provides a comprehensive assessment of the current government OZ assignment, and our fairness-aware optimization framework provides concrete recommendations for policy makers. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2024.0746 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花灯王子发布了新的文献求助10
刚刚
吴帅完成签到,获得积分10
1秒前
华仔应助Te采纳,获得10
1秒前
1秒前
慕青应助海大彭于晏采纳,获得10
1秒前
11完成签到,获得积分10
1秒前
1秒前
辛勤面包发布了新的文献求助10
2秒前
但小安发布了新的文献求助10
2秒前
博ge完成签到 ,获得积分10
2秒前
3秒前
Tree完成签到 ,获得积分10
3秒前
SciGPT应助ZeSheng采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
Jinyang发布了新的文献求助10
3秒前
4秒前
4秒前
三白眼完成签到,获得积分10
4秒前
贵州医科大学完成签到,获得积分10
4秒前
6秒前
DreamSeker完成签到 ,获得积分10
6秒前
科研通AI6应助zhuzhu的江湖采纳,获得10
6秒前
star应助务实雪珍采纳,获得10
7秒前
7秒前
8秒前
思源应助SUNYAOSUNYAO采纳,获得10
8秒前
kook发布了新的文献求助10
8秒前
Criminology34应助惠香香的采纳,获得10
9秒前
sober给sober的求助进行了留言
9秒前
9秒前
FashionBoy应助杜禹锋采纳,获得10
9秒前
Leon完成签到,获得积分10
9秒前
路宇鹏完成签到,获得积分10
10秒前
森林发布了新的文献求助10
10秒前
光亮又晴发布了新的文献求助10
10秒前
10秒前
BowieHuang应助优美紫槐采纳,获得10
10秒前
bkagyin应助花開采纳,获得10
11秒前
寜1发布了新的文献求助10
11秒前
实验室同学完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836