Machine learning and multiple linear regression models can predict ascorbic acid and polyphenol contents, and antioxidant activity in strawberries

抗坏血酸 线性回归 多酚 抗氧化剂 决定系数 回归分析 预测建模 机器学习 逐步回归 数学 人工神经网络 食品科学 均方误差 Lasso(编程语言) 回归 统计 人工智能 化学 计算机科学 生物化学 万维网
作者
Kazufumi Zushi,Miyu Yamamoto,Momoka Matsuura,Kan Tsutsuki,Asumi Yonehana,Ren Imamura,Hiromi Takahashi,Masaaki Kirimura
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
标识
DOI:10.1002/jsfa.13906
摘要

Abstract BACKGROUND Strawberry is a rich source of antioxidants, including ascorbic acid (ASA) and polyphenols, which have numerous health benefits. Antioxidant content and activity are often determined manually using laboratory equipment, which is destructive and time‐consuming. This study constructs a prediction model for antioxidant compounds utilizing machine learning (ML) and multiple linear regression based on environmental, plant growth and agronomic fruit quality‐related parameters as well as antioxidant levels. These were studied in three farms at two‐week intervals during two years of cultivation. RESULTS During the ML model screening, artificial neural network (ANN)‐boosted models displayed a moderate coefficient of determination ( R 2 ) at 0.68–0.78 and relative root mean square error (RRMSE) at 3.8–4.8% in polyphenols and total ASA levels, as well as a high R 2 of 0.96 and low RRMSE at <3.0% in antioxidant activity. Additionally, we developed variable selection models regarding the antioxidant activity, and variables two and five (environmental parameters and leaf length, respectively) with high accuracy were selected. The linear regression analysis between the actual and predicted data of antioxidants in the ANN‐boosted models revealed high fitness with all parameters in almost all training, validation and test sets. Furthermore, environmental parameters are essential in developing such reliable models. CONCLUSION We conclude that ANN‐boosted, stepwise and double‐Lasso regression models can predict antioxidant compounds with enhanced accuracy, and the relevant parameters can be easily acquired on‐site without the need for any specific equipment. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助畅快的文龙采纳,获得10
刚刚
niuyangyang发布了新的文献求助10
刚刚
安静的小蚂蚁完成签到,获得积分10
刚刚
雾散完成签到,获得积分10
刚刚
俭朴的明雪完成签到 ,获得积分10
1秒前
科研通AI2S应助fls221采纳,获得10
3秒前
3秒前
ke科研小白完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
hygge完成签到,获得积分10
5秒前
5秒前
小牛发布了新的文献求助20
6秒前
完美世界应助LQS采纳,获得10
7秒前
贾明完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
9秒前
cyy1226发布了新的文献求助10
9秒前
zike发布了新的文献求助10
10秒前
Dicy发布了新的文献求助10
11秒前
科研通AI2S应助阳光妙竹采纳,获得10
11秒前
11秒前
铅笔995完成签到,获得积分10
12秒前
叶液发布了新的文献求助10
12秒前
赘婿应助yangluyao采纳,获得10
12秒前
Kuzu发布了新的文献求助10
13秒前
zj发布了新的文献求助10
14秒前
航航发布了新的文献求助10
15秒前
15秒前
李爱国应助帅气哈密瓜采纳,获得10
15秒前
亳亳完成签到 ,获得积分10
16秒前
吴帆完成签到,获得积分10
17秒前
快不了完成签到,获得积分10
17秒前
18秒前
CH完成签到,获得积分10
20秒前
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3127482
求助须知:如何正确求助?哪些是违规求助? 2778315
关于积分的说明 7738877
捐赠科研通 2433618
什么是DOI,文献DOI怎么找? 1292999
科研通“疑难数据库(出版商)”最低求助积分说明 623109
版权声明 600489