已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning and multiple linear regression models can predict ascorbic acid and polyphenol contents, and antioxidant activity in strawberries

抗坏血酸 线性回归 多酚 抗氧化剂 决定系数 回归分析 预测建模 机器学习 逐步回归 数学 人工神经网络 食品科学 均方误差 Lasso(编程语言) 回归 统计 人工智能 化学 计算机科学 生物化学 万维网
作者
Kazufumi Zushi,Miyu Yamamoto,Momoka Matsuura,Kan Tsutsuki,Asumi Yonehana,Ren Imamura,Hiromi Takahashi,Masaaki Kirimura
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
标识
DOI:10.1002/jsfa.13906
摘要

Abstract BACKGROUND Strawberry is a rich source of antioxidants, including ascorbic acid (ASA) and polyphenols, which have numerous health benefits. Antioxidant content and activity are often determined manually using laboratory equipment, which is destructive and time‐consuming. This study constructs a prediction model for antioxidant compounds utilizing machine learning (ML) and multiple linear regression based on environmental, plant growth and agronomic fruit quality‐related parameters as well as antioxidant levels. These were studied in three farms at two‐week intervals during two years of cultivation. RESULTS During the ML model screening, artificial neural network (ANN)‐boosted models displayed a moderate coefficient of determination ( R 2 ) at 0.68–0.78 and relative root mean square error (RRMSE) at 3.8–4.8% in polyphenols and total ASA levels, as well as a high R 2 of 0.96 and low RRMSE at <3.0% in antioxidant activity. Additionally, we developed variable selection models regarding the antioxidant activity, and variables two and five (environmental parameters and leaf length, respectively) with high accuracy were selected. The linear regression analysis between the actual and predicted data of antioxidants in the ANN‐boosted models revealed high fitness with all parameters in almost all training, validation and test sets. Furthermore, environmental parameters are essential in developing such reliable models. CONCLUSION We conclude that ANN‐boosted, stepwise and double‐Lasso regression models can predict antioxidant compounds with enhanced accuracy, and the relevant parameters can be easily acquired on‐site without the need for any specific equipment. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学医梅西完成签到,获得积分10
1秒前
溪夕er完成签到,获得积分10
2秒前
李健的粉丝团团长应助swh采纳,获得10
8秒前
小张完成签到 ,获得积分10
13秒前
赘婿应助依依采纳,获得10
14秒前
和谐蛋蛋完成签到,获得积分10
15秒前
16秒前
lizhoukan1完成签到,获得积分10
17秒前
17秒前
威武灵阳完成签到,获得积分10
17秒前
无私的梦凡完成签到,获得积分10
21秒前
打打应助知性的采珊采纳,获得10
21秒前
22秒前
23秒前
cchi完成签到,获得积分10
23秒前
25秒前
小马甲应助midokaori采纳,获得10
26秒前
ryanfeng完成签到,获得积分0
29秒前
英俊的铭应助舒适大山采纳,获得10
31秒前
Kunning完成签到 ,获得积分10
33秒前
33秒前
牙线棒棒哒完成签到 ,获得积分10
34秒前
CipherSage应助YZChen采纳,获得10
35秒前
Ava应助依依采纳,获得10
37秒前
midokaori发布了新的文献求助10
38秒前
苗条的发箍完成签到 ,获得积分10
39秒前
小芭乐完成签到 ,获得积分10
40秒前
土豪的灵竹完成签到 ,获得积分10
41秒前
活泼啤酒完成签到 ,获得积分10
42秒前
cc完成签到 ,获得积分10
42秒前
万崽秋秋糖完成签到 ,获得积分10
42秒前
解语花完成签到,获得积分10
44秒前
FIN应助adfadf采纳,获得30
46秒前
林林完成签到,获得积分10
47秒前
48秒前
RYYYYYYY233完成签到 ,获得积分10
50秒前
狂野的问凝完成签到,获得积分20
51秒前
搁浅完成签到,获得积分10
52秒前
FashionBoy应助冬日暖阳采纳,获得10
52秒前
甘sir完成签到 ,获得积分10
54秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956940
求助须知:如何正确求助?哪些是违规求助? 3502979
关于积分的说明 11110880
捐赠科研通 3233958
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234