A new deep learning-based approach for concrete crack identification and damage assessment

结构工程 鉴定(生物学) 材料科学 计算机科学 工程类 法律工程学 植物 生物
作者
Fuyan Guo,Qi Cui,Hongwei Zhang,Yue Wang,Zhang Huidong,Xinqun Zhu,Jiao Chen
出处
期刊:Advances in Structural Engineering [SAGE Publishing]
卷期号:27 (13): 2303-2318
标识
DOI:10.1177/13694332241266535
摘要

Concrete building structures are prone to cracking as they are subjected to environmental temperatures, freeze-thaw cycles, and other operational environmental factors. Failure to detect cracks in the key building structure at the early stage can result in serious accidents and associated economic losses. A new method using the SE-U-Net model based on a conditional generative adversarial network (CGAN) has been developed to identify small cracks in concrete structures in this paper. This proposed method was a pixel-level U-Net model based on a generative network, that was integrated the original convolutional layer with an attention mechanism, and an SE module in the jump connection section was added to improve the identifiability of the model. The discriminative network compared the generated images with real images using the PatchGAN model. Through the adversarial training of generator and discriminator, the performance of generator in crack image segmentation task is improved, and the trained generation network is used to segment cracks. In damage assessments, the crack skeleton was represented by the individual pixel width and recognized using the binary morphological crack skeleton method, in which the final length, area, and average width of the crack could be determined through the geometric correction index. The results showed that compared with other methods, the proposed method could better identify subtle pixel-level cracks, and the identification accuracy is 98.48%. These methods are of great significance for the identification of cracks and the damage assessment of concrete structures in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆浩学化学完成签到,获得积分10
1秒前
Slemon完成签到,获得积分10
2秒前
4秒前
大个应助普鲁卡因采纳,获得10
7秒前
咖啡豆发布了新的文献求助10
8秒前
意志所向完成签到,获得积分10
8秒前
《子非鱼》完成签到,获得积分10
9秒前
缓慢的甜瓜完成签到,获得积分10
11秒前
Llllll完成签到,获得积分10
11秒前
orixero应助梦华老师采纳,获得10
12秒前
大橙子发布了新的文献求助10
13秒前
gaoyang123完成签到 ,获得积分10
13秒前
qwe1108完成签到 ,获得积分10
13秒前
14秒前
jane完成签到 ,获得积分10
17秒前
19秒前
瑾玉完成签到,获得积分10
19秒前
21秒前
Akim应助duckspy采纳,获得10
21秒前
那种完成签到,获得积分10
21秒前
liuyanq完成签到,获得积分20
21秒前
22秒前
普鲁卡因发布了新的文献求助10
23秒前
加油杨完成签到 ,获得积分10
24秒前
liuyanq发布了新的文献求助10
27秒前
随风完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
32秒前
米九完成签到,获得积分10
34秒前
zhao完成签到,获得积分10
37秒前
普鲁卡因发布了新的文献求助10
37秒前
zj完成签到,获得积分10
43秒前
蓝橙完成签到,获得积分10
44秒前
48秒前
GD88完成签到,获得积分10
49秒前
糟糕的梨愁完成签到,获得积分10
50秒前
莫西莫西完成签到 ,获得积分10
51秒前
小趴蔡完成签到 ,获得积分10
53秒前
唐唐发布了新的文献求助10
53秒前
飘逸剑身完成签到,获得积分10
56秒前
airtermis完成签到 ,获得积分10
56秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022