A new deep learning-based approach for concrete crack identification and damage assessment

结构工程 鉴定(生物学) 材料科学 计算机科学 工程类 法律工程学 生物 植物
作者
Fuyan Guo,Qi Cui,Hongwei Zhang,Yue Wang,Zhang Huidong,Xinqun Zhu,Jiao Chen
出处
期刊:Advances in Structural Engineering [SAGE]
卷期号:27 (13): 2303-2318
标识
DOI:10.1177/13694332241266535
摘要

Concrete building structures are prone to cracking as they are subjected to environmental temperatures, freeze-thaw cycles, and other operational environmental factors. Failure to detect cracks in the key building structure at the early stage can result in serious accidents and associated economic losses. A new method using the SE-U-Net model based on a conditional generative adversarial network (CGAN) has been developed to identify small cracks in concrete structures in this paper. This proposed method was a pixel-level U-Net model based on a generative network, that was integrated the original convolutional layer with an attention mechanism, and an SE module in the jump connection section was added to improve the identifiability of the model. The discriminative network compared the generated images with real images using the PatchGAN model. Through the adversarial training of generator and discriminator, the performance of generator in crack image segmentation task is improved, and the trained generation network is used to segment cracks. In damage assessments, the crack skeleton was represented by the individual pixel width and recognized using the binary morphological crack skeleton method, in which the final length, area, and average width of the crack could be determined through the geometric correction index. The results showed that compared with other methods, the proposed method could better identify subtle pixel-level cracks, and the identification accuracy is 98.48%. These methods are of great significance for the identification of cracks and the damage assessment of concrete structures in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明朗完成签到 ,获得积分10
4秒前
lynn完成签到 ,获得积分10
11秒前
Allot完成签到,获得积分10
13秒前
15秒前
lezard完成签到,获得积分10
33秒前
lwtsy完成签到,获得积分10
37秒前
寒战完成签到 ,获得积分10
44秒前
哈哈完成签到 ,获得积分10
44秒前
苏格拉没有底完成签到 ,获得积分10
56秒前
敞敞亮亮完成签到 ,获得积分10
1分钟前
青珊完成签到,获得积分10
1分钟前
饭饭完成签到 ,获得积分10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
萧水白应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助xtutang采纳,获得10
1分钟前
时尚数据线完成签到,获得积分10
1分钟前
欣喜怜南完成签到 ,获得积分0
1分钟前
桂花完成签到 ,获得积分10
1分钟前
eternal_dreams完成签到 ,获得积分10
2分钟前
clare完成签到 ,获得积分10
2分钟前
李思完成签到 ,获得积分10
2分钟前
tranphucthinh完成签到,获得积分10
2分钟前
ran完成签到 ,获得积分10
2分钟前
吃小孩的妖怪完成签到 ,获得积分10
2分钟前
小石榴的爸爸完成签到 ,获得积分10
2分钟前
Emperor完成签到 ,获得积分0
2分钟前
小石榴爸爸完成签到 ,获得积分10
2分钟前
mrwang完成签到 ,获得积分10
2分钟前
乐枳完成签到 ,获得积分10
2分钟前
一路有你完成签到 ,获得积分10
2分钟前
莫友安完成签到 ,获得积分10
3分钟前
3分钟前
孤独如曼完成签到 ,获得积分10
3分钟前
陈秋完成签到,获得积分10
3分钟前
小苔藓完成签到 ,获得积分10
3分钟前
digger2023完成签到 ,获得积分10
3分钟前
辛勤的青柏完成签到,获得积分20
4分钟前
4分钟前
wenhuanwenxian完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376895
求助须知:如何正确求助?哪些是违规求助? 2993047
关于积分的说明 8752976
捐赠科研通 2677392
什么是DOI,文献DOI怎么找? 1466593
科研通“疑难数据库(出版商)”最低求助积分说明 678398
邀请新用户注册赠送积分活动 669957