A new deep learning-based approach for concrete crack identification and damage assessment

结构工程 鉴定(生物学) 材料科学 计算机科学 工程类 法律工程学 生物 植物
作者
Fuyan Guo,Qi Cui,Hongwei Zhang,Yue Wang,Zhang Huidong,Xinqun Zhu,Jiao Chen
出处
期刊:Advances in Structural Engineering [SAGE]
卷期号:27 (13): 2303-2318
标识
DOI:10.1177/13694332241266535
摘要

Concrete building structures are prone to cracking as they are subjected to environmental temperatures, freeze-thaw cycles, and other operational environmental factors. Failure to detect cracks in the key building structure at the early stage can result in serious accidents and associated economic losses. A new method using the SE-U-Net model based on a conditional generative adversarial network (CGAN) has been developed to identify small cracks in concrete structures in this paper. This proposed method was a pixel-level U-Net model based on a generative network, that was integrated the original convolutional layer with an attention mechanism, and an SE module in the jump connection section was added to improve the identifiability of the model. The discriminative network compared the generated images with real images using the PatchGAN model. Through the adversarial training of generator and discriminator, the performance of generator in crack image segmentation task is improved, and the trained generation network is used to segment cracks. In damage assessments, the crack skeleton was represented by the individual pixel width and recognized using the binary morphological crack skeleton method, in which the final length, area, and average width of the crack could be determined through the geometric correction index. The results showed that compared with other methods, the proposed method could better identify subtle pixel-level cracks, and the identification accuracy is 98.48%. These methods are of great significance for the identification of cracks and the damage assessment of concrete structures in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
会写日记的乌龟先生完成签到,获得积分10
1秒前
Raza完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
三人行发布了新的文献求助10
3秒前
3秒前
佩奇666发布了新的文献求助10
5秒前
小成完成签到 ,获得积分10
6秒前
xiaoyao完成签到,获得积分10
7秒前
8秒前
六六完成签到 ,获得积分10
9秒前
赘婿应助千寻采纳,获得10
11秒前
13秒前
云初应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
14秒前
Mic应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
Mic应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
C花间照应助科研通管家采纳,获得10
14秒前
14秒前
shhoing应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
段醒醒发布了新的文献求助10
17秒前
佩奇666完成签到,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533