A new deep learning-based approach for concrete crack identification and damage assessment

结构工程 鉴定(生物学) 材料科学 计算机科学 工程类 法律工程学 植物 生物
作者
Fuyan Guo,Qi Cui,Hongwei Zhang,Yue Wang,Zhang Huidong,Xinqun Zhu,Jiao Chen
出处
期刊:Advances in Structural Engineering [SAGE Publishing]
卷期号:27 (13): 2303-2318
标识
DOI:10.1177/13694332241266535
摘要

Concrete building structures are prone to cracking as they are subjected to environmental temperatures, freeze-thaw cycles, and other operational environmental factors. Failure to detect cracks in the key building structure at the early stage can result in serious accidents and associated economic losses. A new method using the SE-U-Net model based on a conditional generative adversarial network (CGAN) has been developed to identify small cracks in concrete structures in this paper. This proposed method was a pixel-level U-Net model based on a generative network, that was integrated the original convolutional layer with an attention mechanism, and an SE module in the jump connection section was added to improve the identifiability of the model. The discriminative network compared the generated images with real images using the PatchGAN model. Through the adversarial training of generator and discriminator, the performance of generator in crack image segmentation task is improved, and the trained generation network is used to segment cracks. In damage assessments, the crack skeleton was represented by the individual pixel width and recognized using the binary morphological crack skeleton method, in which the final length, area, and average width of the crack could be determined through the geometric correction index. The results showed that compared with other methods, the proposed method could better identify subtle pixel-level cracks, and the identification accuracy is 98.48%. These methods are of great significance for the identification of cracks and the damage assessment of concrete structures in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助123采纳,获得10
刚刚
刚刚
EgoElysia发布了新的文献求助10
1秒前
1秒前
2秒前
科研小贩发布了新的文献求助10
3秒前
whatever应助Tao采纳,获得10
4秒前
grisco发布了新的文献求助10
5秒前
6秒前
6秒前
puzi发布了新的文献求助10
6秒前
ailsa发布了新的文献求助10
7秒前
HHHHH发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
热情无心完成签到,获得积分10
9秒前
风清扬发布了新的文献求助10
9秒前
shuiyu发布了新的文献求助10
10秒前
那咋了发布了新的文献求助10
10秒前
小马甲应助echoxq采纳,获得10
10秒前
10秒前
11秒前
js关闭了js文献求助
12秒前
小刘哥加油完成签到 ,获得积分10
12秒前
123发布了新的文献求助10
13秒前
慈祥的煎蛋完成签到,获得积分10
14秒前
虾米发布了新的文献求助10
14秒前
在水一方应助纳斯达克采纳,获得10
14秒前
13333完成签到,获得积分10
15秒前
Hello应助小周采纳,获得10
15秒前
Kolanet完成签到,获得积分10
15秒前
Orange应助科研通管家采纳,获得30
16秒前
坦率的匪应助科研通管家采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
duohao2023应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得50
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
坦率的匪应助科研通管家采纳,获得10
16秒前
坦率的匪应助科研通管家采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028