已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new deep learning-based approach for concrete crack identification and damage assessment

结构工程 鉴定(生物学) 材料科学 计算机科学 工程类 法律工程学 植物 生物
作者
Fuyan Guo,Qi Cui,Hongwei Zhang,Yue Wang,Zhang Huidong,Xinqun Zhu,Jiao Chen
出处
期刊:Advances in Structural Engineering [SAGE]
卷期号:27 (13): 2303-2318
标识
DOI:10.1177/13694332241266535
摘要

Concrete building structures are prone to cracking as they are subjected to environmental temperatures, freeze-thaw cycles, and other operational environmental factors. Failure to detect cracks in the key building structure at the early stage can result in serious accidents and associated economic losses. A new method using the SE-U-Net model based on a conditional generative adversarial network (CGAN) has been developed to identify small cracks in concrete structures in this paper. This proposed method was a pixel-level U-Net model based on a generative network, that was integrated the original convolutional layer with an attention mechanism, and an SE module in the jump connection section was added to improve the identifiability of the model. The discriminative network compared the generated images with real images using the PatchGAN model. Through the adversarial training of generator and discriminator, the performance of generator in crack image segmentation task is improved, and the trained generation network is used to segment cracks. In damage assessments, the crack skeleton was represented by the individual pixel width and recognized using the binary morphological crack skeleton method, in which the final length, area, and average width of the crack could be determined through the geometric correction index. The results showed that compared with other methods, the proposed method could better identify subtle pixel-level cracks, and the identification accuracy is 98.48%. These methods are of great significance for the identification of cracks and the damage assessment of concrete structures in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
大个应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
史前巨怪完成签到,获得积分0
7秒前
潮鸣完成签到 ,获得积分10
7秒前
寒酥发布了新的文献求助10
8秒前
小鱼发布了新的文献求助10
9秒前
11秒前
科研通AI6.1应助chenyuns采纳,获得10
11秒前
13秒前
我是老大应助隐形小熊猫采纳,获得10
13秒前
英勇明雪完成签到 ,获得积分10
14秒前
清爽冬莲完成签到,获得积分10
14秒前
莫小李发布了新的文献求助10
16秒前
酷波er应助王子请吃药采纳,获得10
17秒前
17秒前
清爽冬莲发布了新的文献求助10
18秒前
轩轩更努力完成签到 ,获得积分10
20秒前
20秒前
寒酥完成签到,获得积分10
22秒前
Able_SCIjun24完成签到,获得积分10
23秒前
24秒前
Dylan完成签到 ,获得积分10
24秒前
26秒前
李健应助寒酥采纳,获得10
27秒前
29秒前
30秒前
宝剑葫芦完成签到 ,获得积分10
30秒前
lili完成签到 ,获得积分10
31秒前
老年学术废物完成签到 ,获得积分10
33秒前
34秒前
34秒前
英俊的铭应助jiang采纳,获得10
34秒前
36秒前
36秒前
lijunliang完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779646
求助须知:如何正确求助?哪些是违规求助? 5648734
关于积分的说明 15452066
捐赠科研通 4910802
什么是DOI,文献DOI怎么找? 2642907
邀请新用户注册赠送积分活动 1590566
关于科研通互助平台的介绍 1544990