亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new deep learning-based approach for concrete crack identification and damage assessment

结构工程 鉴定(生物学) 材料科学 计算机科学 工程类 法律工程学 植物 生物
作者
Fuyan Guo,Qi Cui,Hongwei Zhang,Yue Wang,Zhang Huidong,Xinqun Zhu,Jiao Chen
出处
期刊:Advances in Structural Engineering [SAGE]
卷期号:27 (13): 2303-2318
标识
DOI:10.1177/13694332241266535
摘要

Concrete building structures are prone to cracking as they are subjected to environmental temperatures, freeze-thaw cycles, and other operational environmental factors. Failure to detect cracks in the key building structure at the early stage can result in serious accidents and associated economic losses. A new method using the SE-U-Net model based on a conditional generative adversarial network (CGAN) has been developed to identify small cracks in concrete structures in this paper. This proposed method was a pixel-level U-Net model based on a generative network, that was integrated the original convolutional layer with an attention mechanism, and an SE module in the jump connection section was added to improve the identifiability of the model. The discriminative network compared the generated images with real images using the PatchGAN model. Through the adversarial training of generator and discriminator, the performance of generator in crack image segmentation task is improved, and the trained generation network is used to segment cracks. In damage assessments, the crack skeleton was represented by the individual pixel width and recognized using the binary morphological crack skeleton method, in which the final length, area, and average width of the crack could be determined through the geometric correction index. The results showed that compared with other methods, the proposed method could better identify subtle pixel-level cracks, and the identification accuracy is 98.48%. These methods are of great significance for the identification of cracks and the damage assessment of concrete structures in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
violet发布了新的文献求助10
2秒前
3秒前
无心的小霸王完成签到 ,获得积分10
3秒前
6秒前
成成发布了新的文献求助10
9秒前
Lainey完成签到,获得积分10
12秒前
17秒前
want_top_journal完成签到,获得积分10
23秒前
平常安完成签到,获得积分10
34秒前
35秒前
35秒前
35秒前
35秒前
jyy应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
Li发布了新的文献求助10
36秒前
42秒前
共享精神应助Li采纳,获得10
46秒前
心随以动完成签到 ,获得积分10
55秒前
修辛完成签到 ,获得积分10
1分钟前
1分钟前
学不完了完成签到 ,获得积分10
1分钟前
potato0mud发布了新的文献求助10
1分钟前
NEUROVASCULAR完成签到,获得积分10
1分钟前
1分钟前
NEUROVASCULAR发布了新的文献求助10
1分钟前
1分钟前
fay发布了新的文献求助10
1分钟前
无奈灵枫发布了新的文献求助20
1分钟前
fay完成签到,获得积分10
1分钟前
Jasper应助fay采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
爆米花应助violet采纳,获得10
1分钟前
1分钟前
1分钟前
seecl李发布了新的文献求助10
1分钟前
seecl李完成签到,获得积分10
2分钟前
以七完成签到 ,获得积分10
2分钟前
鲤鱼山人完成签到 ,获得积分10
2分钟前
NovaZ完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788402
求助须知:如何正确求助?哪些是违规求助? 5707227
关于积分的说明 15473503
捐赠科研通 4916475
什么是DOI,文献DOI怎么找? 2646376
邀请新用户注册赠送积分活动 1594035
关于科研通互助平台的介绍 1548473