Non-parametric Bayesian approach to multiple treatment comparisons in network meta-analysis with application to comparisons of anti-depressants

荟萃分析 贝叶斯概率 参数统计 贝叶斯网络 计算机科学 计算生物学 人工智能 医学 药理学 机器学习 统计 数学 内科学 生物
作者
Andrés F. Barrientos,Garritt L. Page,Lifeng Lin
出处
期刊:Applied statistics [Wiley]
标识
DOI:10.1093/jrsssc/qlae038
摘要

Abstract Network meta-analysis is a powerful tool to synthesize evidence from independent studies and compare multiple treatments simultaneously. A critical task of performing a network meta-analysis is to offer ranks of all available treatment options for a specific disease outcome. Frequently, the estimated treatment rankings are accompanied by a large amount of uncertainty, suffer from multiplicity issues, and rarely permit possible ties of treatments with similar performance. These issues make interpreting rankings problematic as they are often treated as absolute metrics. To address these shortcomings, we formulate a ranking strategy that adapts to scenarios with high-order uncertainty by producing more conservative results. This improves the interpretability while simultaneously accounting for multiple comparisons. To admit ties between treatment effects in cases where differences between treatment effects are negligible, we also develop a Bayesian non-parametric approach for network meta-analysis. The approach capitalizes on the induced clustering mechanism of Bayesian non-parametric methods, producing a positive probability that two treatment effects are equal. We demonstrate the utility of the procedure through numerical experiments and a network meta-analysis designed to study antidepressant treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
Owen应助得得得采纳,获得10
2秒前
科目三应助皮皮虾采纳,获得10
2秒前
852应助nan采纳,获得10
2秒前
syw完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
李健的小迷弟应助abc123采纳,获得10
7秒前
8秒前
weiwei完成签到,获得积分10
10秒前
黄文娟完成签到,获得积分20
10秒前
Wyd2000完成签到,获得积分10
10秒前
MapleLeaf完成签到 ,获得积分10
10秒前
踏实天空应助小杰采纳,获得10
11秒前
陶醉琳发布了新的文献求助10
11秒前
12秒前
12秒前
什么我才是大萌萌完成签到,获得积分0
12秒前
Enkcy完成签到,获得积分10
12秒前
lucas发布了新的文献求助10
13秒前
没有逗应助橘子果酱采纳,获得10
14秒前
Akim应助liuzengzhang666采纳,获得10
16秒前
16秒前
18秒前
铅笔菌发布了新的文献求助10
18秒前
Old-Iron完成签到,获得积分10
19秒前
20秒前
Zzkai发布了新的文献求助10
21秒前
21秒前
lucas完成签到,获得积分10
23秒前
24秒前
24秒前
hdh关闭了hdh文献求助
25秒前
曲夜白发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138255
求助须知:如何正确求助?哪些是违规求助? 2789256
关于积分的说明 7790627
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300583
科研通“疑难数据库(出版商)”最低求助积分说明 625969
版权声明 601053